Упражнения. Питание. Диеты. Тренировки. Спорт

Физиологические свойства сердечной мышцы автоматия сердца. Сердечная мышца – анатомические и физиологические особенности

Сердце по праву — самый главный орган человека, ведь оно перекачивает кровь и отвечает циркуляцию по организму растворенного кислорода и других питательных веществ. Его остановка на несколько минут может вызвать необратимые процессы, дистрофию и отмирание органов. По этой же причине болезни и остановка сердца являются одной из самых распространенных причин смертности.

Какой тканью образовано сердце

Сердце – полый орган размером примерно с кулак человека. Оно практически полностью образовано мышечной тканью, поэтому многие сомневаются: сердце – это мышца или орган? Правильный ответ на этот вопрос – орган, образованный мышечной тканью.

Сердечная мышца называется миокард, ее строение существенно отличается от остальной мышечной ткани: образована она клетками-кардиомиоцитами. Сердечная мышечная ткань имеет поперечнополосатую структуру. В ее составе есть тонкие и толстые волокна. Микрофибриллы – скопления клеток, которые образуют мышечные волокна, собраны в пучки разной длины.

Свойства сердечной мышцы – обеспечение сокращения сердца и перекачивание крови .

Где находится сердечная мышца? Посередине, между двумя тонкими оболочками:

  • Эпикардом;
  • Эндокардом.

На долю миокарда приходится максимальное количество массы сердца.

Механизмы, которые обеспечивают сокращение:

В цикле работы сердца выделяют две фазы:

  • Относительную, при которой клетки реагируют на сильные раздражители;
  • Абсолютную – когда на протяжении определенного промежутка времени мышечная ткань не реагирует даже на очень сильные раздражители.

Механизмы компенсации

Нейроэндокринная система защищает сердечную мышцу от перегрузок и помогает сохранить здоровье. Она обеспечивает передачу «команд» миокарду, когда нужно увеличить частоту сердечных сокращений.

Причиной для этого может стать:

  • Определенное состояние внутренних органов;
  • Реакция на условия окружающей среды;
  • Раздражители, в т. ч. нервные.

Обычно в этих ситуациях в большом количестве вырабатывается адреналин и норадреналин, чтобы «уравновесить» их действие, требуется увеличение количества кислорода. Чем чаще ЧСС, тем больший объем насыщенной кислородом крови разносится по организму.

Особенности строения сердца

Сердце взрослого человека весит примерно 250-330 г. У женщин размер этого органа меньше, как и объем перекачиваемой крови.

Состоит оно из 4 камер:

  • Двух предсердий;
  • Двух желудочков.

Через правую часто сердца проходит малый круг кровообращения, через левый – большой. Поэтому стенки левого желудочка обычно больше: чтобы за одно сокращение сердце могло вытолкнуть больший объем крови.

Направление и объем выталкиваемой крови контролируют клапаны:

  • Двухстворчатый (митральный) – с левой стороны, между левым желудочком и предсердием;
  • Трехстворчатый – с правой стороны;
  • Аортальный;
  • Легочный.

Патологические процессы в сердечной мышце

При небольших сбоях в работе сердца включается компенсаторный механизм. Но нередки состояния, когда развивается патология, дистрофия сердечной мышцы.

К этому приводят:

  • Кислородное голодание;
  • Потеря мышечной энергии и ряд других факторов.

Мышечные волокна становятся тоньше, а недостаток объема заменяется фиброзной тканью. Дистрофия обычно возникает «в связке» с авитаминозами, интоксикациями, анемией, нарушениями в работе эндокринной системы.

Наиболее частыми причинами такого состояния являются:

  • Миокардит (воспаление сердечной мышцы);
  • Атеросклероз аорты;
  • Повышенное артериальное давление.

Если болит сердце: наиболее частые заболевания

Сердечных заболеваний довольно много, и не всегда они сопровождаются болью именно в этом органе.

Часто в этой области отдаются болевые ощущения, возникающие в других органах:

  • Желудке;
  • Легких;
  • При травме грудной клетки.

Причины и характер боли

Болевые ощущения в области сердца бывают:

  1. Острыми , пронизывающими, когда человеку больно даже дышать. Они указывают на острый сердечный приступ, инфаркт и другие опасные состояния.
  2. Ноющая возникает как реакция на стресс, при гипертонии, хронических заболеваниях сердечнососудистой системы.
  3. Спазм , который отдает в руку или лопатку.


Часто боль в сердце связана с:

  • Эмоциональными переживаниями.
  • Но нередко возникает и в состоянии покоя.

    Все боли в этой области можно разделить на две основные группы:

    1. Ангинозные, или ишемические – связаны с недостаточным кровоснабжением миокарда. Часто возникают на пике эмоциональных переживания, также при некоторых хронических заболеваниях стенокардии, гипертонии. Характеризуется ощущением сдавливания или жжения разной интенсивности, часто отдает в руку.
    2. Кардиологические беспокоят пациента практически постоянно . Носят слабый ноющий характер. Но боль может становиться резкой при глубоком вдохе или физических нагрузках.


    Основными свойствами сердечной мышцы, определяющими непрерывное ритмическое сокращение сердца в течение всей жизни организма, являются автоматия, возбудимость, проводи­мость и сократимость.

    Автоматия. Под автоматией понимают способность сердеч­ной мышцы ритмически возбуждаться и сокращаться без каких-иибо внешних по отношению к сердцу воздействий, т.е. без участия нервной системы и гуморальных факторов, доставля­емых к сердцу кровью.

    Доказательством автоматии сердца послужили следующие на­блюдения и эксперименты.

    Изолированное сердце, т. е. выведенное из организма и поме­щенное в питательный раствор, продолжает самопроизвольно со­кращаться. Даже разрезанное на кусочки, оно сокращается в том же ритме, что и у здорового животного. Если у животного денер-вировать сердце, т. е. перерезать все нервные стволы, подходящие к сердцу, оно продолжает сокращаться.

    На способности работать без воздействия внешних раздражи­телей основана пересадка сердца. Оживление остановившегося сердца достигается восстановлением спонтанной активности сердца, его автоматии.

    В чем причина такого уникального свойства сердца? У боль­шинства беспозвоночных животных автоматия связана с нервны­ми ганглиями, расположенными вблизи сердца, т. е. имеет ней-рогенную природу. У всех же позвоночных животных и у части беспозвоночных автоматия сердца обусловлена не нервными, а мышечными клетками, которые самопроизвольно деполяризу­ются после каждого потенциала действия. Эти клетки называ­ются пейсмекерами, или «задающими сердечный ритм», или во­дителями сердечного ритма. Такая теория автоматии сердца на­зывается миогенной.

    Способностью к автоматии обладают атипичные мышечные клетки, составляющие проводящую систему сердца.

    Ведущую роль в автоматии играет синусный узел. Он обладает наиболее высокой активностью по сравнению с други­ми участками проводящей системы, частота импульсации в нем наиболее высокая, и он задает определенную частоту сокращения сердца в состоянии физиологического покоя. Такой ритм обычно называют синусным ритмом, а синусный узел - водителем ритма сердца первого порядка.

    Если отделить лигатурой синусный узел от предсердий (опыт Станниуса), то обычно сердце останавливается. Однако через не­которое время оно снова начинает сокращаться, но в более редком ритме. Этот ритм «задает» следующий узел проводящей систе­мы - атриовентрикулярный. Более редкие сокращения сердца обусловлены тем, что возбудимость атриовентрикулярного узла меньше, чем синусного. Этот узел называют водителем ритма сердца второго порядка. Если же и атриовентрикулярный узел пе­рестает генерировать возбуждение, то водителем ритма сердца ста­новится пучок Гиса, но его возбудимость еще меньше; пучок Гиса называют водителем ритма третьего порядка.

    В обычных условиях атриовентрикулярный узел и пучок Гиса только проводят возбуждение от синусного узла. Их собственная автоматия как бы подавлена главным пейсмекером, и только при развитии патологического процесса, прекращающего функцию


    синусного узла, свой ритм навязывают нижележащие узлы. Они являются латентными, или скрытыми, или потенциальными пейсмекерами.

    Какова природа автоматии? Методами электрофизиологии ус­тановлено, что потенциал действия (ПД) клеток проводящей сис­темы отличается от других мышечных и нервных клеток. Во время расслабления сердца - диастолы - начинается медленно нараста­ющая деполяризация мембраны, которая затем переходит в фазу быстрой деполяризации (рис. 6.3, А). Фаза реполяризации в пейс-мекерах довольно продолжительная, в пейсмекерах синусного узла она имеет выраженное плато вместо пика потенциала. Сразу пос­ле возвращения мембранного потенциала к уровню потенциала покоя снова начинается медленная диастолическая деполяриза­ция мембраны, и когда разность потенциалов между наружной и внутренней поверхностями мембраны уменьшается до определен­ного критического, или порогового уровня, внезапно возникает новый крутой сдвиг электрического заряда клетки, что свидетель­ствует о ее возбуждении.






    Интервал между двумя ПД зависит от длительности медлен­ной диастолической деполяризации, ее величины и порогового уровня сердечного ПД. Если скорость деполяризации уменыиает-

    Ся (например, при охлаждении синусного узла), то пороговый уровень деполяризации наступает позднее, частота ПД и сокраще­ний сердца уменьшаются. При возрастании скорости деполяриза­ции мембраны, напротив, пороговый уровень деполяризации воз­никает раньше и это приводит к учащению возбуждения сердца. Отчасти этим объясняется учащение сердечной деятельности при повышении температуры тела.

    Медленная диастолическая деполяризация обусловлена осо­бенностями ионной проницаемости мембраны пейсмекеров. Как и в других клетках, электрические процессы в мембранах миокар­да являются следствием пассивного и активного перемещения ионов натрия и калия через тончайшие каналы (поры) в мембра­не, проницаемость которых регулируется заряженными частица­ми - ионами Са 2+ или Мп 2 . Медленная диастолическая депо­ляризация объясняется тем, что во время реполяризации часть натриевых каналов не инактивируется и осуществляется медлен­ный вход сначала натрия, а затем кальция в мембрану. Когда ко­личество ионов натрия, проникших в клетку, снизит мембранный потенциал до критического уровня, наступает быстрая фаза деполя­ризации и ПД достигает своего максимального уровня.

    В теории об автоматии пейсмекеров еще много неясного, и раскрытие тончайших механизмов электрических процессов, происходящих в сердце, - актуальная задача современной кар­диологии.

    Возбудимость. Возбудимость - свойство сердечной мышцы переходить в состояние возбуждения под влиянием различных раздражителей.

    В естественных условиях раздражителем является ПД, возни­кающий в синусном узле и распространяющийся по проводя­щей системе сердца до рабочих кардиомиоцитов. При некоторых заболеваниях сердца раздражение может возникать в других его участках, которые генерируют собственные ПД, и тогда сердеч­ный ритм будет нарушен из-за взаимодействия разных по частоте и фазе ПД. В экспериментах на животных в качестве раздражите­лей могут быть использованы механические, термические или хи­мические воздействия, если их величина превышает порог возбу­димости сердца.

    При болезнях сердца, сопровождающихся нарушением сердеч­ного ритма, больным вживляют в сердце миниатюрные электро­ды, питающиеся от батареек. Импульсы тока подаются непосред­ственно на сердце и возбуждают в нем ритмические импульсы. При внезапной остановке сердца или нарушении синхронизации отдельных мышечных волокон возможно воздействие на сердце прямо через кожный покров сильным коротким электрическим разрядом напряжением в несколько кВт. Это вызывает одновре­менное возбуждение всех мышечных волокон, после чего восста­навливается работа сердца.


    Во время возбуждения в сердце возникают физико-хими­ческие, морфологические и биохимические изменения, кото­рые приводят к сокращению рабочего миокарда. Одними из ранних признаков возбуждения являются активация натриевых каналов и диффузия ионов натрия из межклеточной жидкости через мембрану, что приводит к ее деполяризации и возник­новению ПД.

    В клетках рабочего миокарда ПД равен 80...90 мВ, при ПД Ю0...120мВ медленная диастолическая деполяризация в отличие от пейсмекеров отсутствует. Скорость нарастания деполяризации велика, восходящая часть ПД очень крутая, но реполяризация протекает замедленно, и мембрана остается деполяризованной в течение сотен миллисекунд (см. рис. 6.3, Б).

    Таким образом, длительность ПД в миокардиоцитах во много раз больше, чем в других мышечных волокнах. Благодаря этому все мышечные волокна предсердий или желудочков успевают со­кратиться до того, как какое-либо из этих волокон начнет рас­слабляться. Поэтому фаза реполяризации продолжается в течение всей систолы. Во время развития ПД возбудимость сердца, как и других возбудимых тканей, изменяется. Во время деполяри­зации возбудимость сердца резко снижается. Это - фаза аб­солютной рефрактерности. Причиной ее является инактивация натриевых каналов, что прекращает поступление новых ионов натрия в мембрану. Если в скелетной мышце абсо­лютная рефрактерность очень кратковременная, измеряется деся­тыми долями миллисекунды и заканчивается в начале сокращения мышцы, то в сердце абсолютная невозбудимость продолжается весь период систолы. Практически это означает, что если во время сис­толы на сердце действует какой-либо раздражитель, даже сверх­пороговый, то сердце на него не реагирует. Поэтому в отличие от скелетных мышц сердце не способно к тетаническим сокращениям и защищено от слишком быстрого повторного возбуждения и со­кращения. Все сокращения сердечной мышцы одиночные. При очень большой частоте импульсов возбуждения сердце сокращает­ся не на каждый ПД, а на только те из них, которые поступают по окончании абсолютной рефрактерности.

    Во время нисходящей фазы реполяризации, которая совпада­ет с началом расслабления сердечной мышцы, возбудимость серд­ца начинает восстанавливаться. Это - фаза относитель­ной рефрактерности. Если в начале диастолы на сердце действует какой-либо дополнительный раздражитель, то сердце готово ответить на него новой волной возбуждения. Внеочеред­ное возбуждение и сокращение сердца под действием раздра­жителя в период относительной рефрактерности называется экстрасистолой.

    Если очаг внеочередного возбуждения находится в синусном узле, то это приводит к преждевременному возникновению сер-

    дечного цикла, при этом после­довательность сокращений пред­сердий и желудочков не изменя­ется. Если же возбуждение возни­кает в желудочках, то после вне­очередного сокращения (экстра­систолы) появляется удлинен­ная пауза. Интервал между экст­расистолой и следующей (очередной) систолой желудочков на­зывается компенсаторной паузой (рис. 6.4.).

    Компенсаторная пауза объясняется тем, что экстрасистола, как и всякое сокращение сердечной мышцы, сопровождается рефрак­терной паузой. Очередной импульс, возникающий в синусном узле, приходит в желудочки во время абсолютной рефрактерное™ и не вызывает их сокращения. Новое сокращение наступит лишь в ответ на следующий импульс, когда возбудимость миокарда вос­становится.

    После относительной рефрактерности в сердце наступает очень короткий период повышенной возбудимости - экзаль­тации, когда сердце готово ответить даже на подпороговое раздражение.

    Проводимость. Проводимость - свойство сердечной мышцы проводить возбуждение.

    Как уже сказано, импульс возбуждения (ПД), возникая в пейс-мекерах синусного узла, распространяется сначала на предсер­дия. В предсердиях, где очень небольшое количество проводя­щих атипичных мышечных волокон, возбуждение распространя­ется не только по ним, но и по рабочим кардиомиоцитам. Это объясняет небольшую скорость распространения возбуждения в предсердиях.

    Поскольку синусный узел расположен в правом предсердии, а скорость передачи ПД невелика, то возбуждение правого предсер-


    дия начинается немного раньше, чем левого. Сокращение же ле­вого и правого предсердий происходит одновременно.

    После того как возбуждение охватит мышцы предсердий, они сокращаются, а возбуждение концентрируется и задерживается в атриовентрикулярном узле. Атриовентрикулярная задержка длится до окончания сокращения предсердий, и только после этого воз­буждение переходит на пучок Гиса. Таким образом, биологическое значение атриовентрикулярной задержки заключается в обеспече­нии последовательности сокращений предсердий и желудочков. Одновременное их сокращение иногда бывает при очень серьезной патологии, когда возбуждение возникает не в синусном узле, а в ат­риовентрикулярном и распространяется в обе стороны от атриовен-трикулярного узла - и в предсердия, и в желудочки. В таком случае наступает резкое нарушение гемодинамики в сердце.

    Механизмы атриовентрикулярной задержки не выяснены. Воз­можно, влияет низкая амплитуда ПД в клетках-пейсмекерах дан­ного узла, сильная натриевая инактивация, большое сопротивле­ние межклеточных контактов.

    Далее возбуждение распространяется по пучку Гиса, ножкам пучка Гиса и волокнам Пуркинье. Волокна Пуркинье контактиру­ют с сократительными волокнами миокарда, и возбуждение пере­дается с проводящей системы на рабочие мышцы.

    Скорость распространения возбуждения в сердце следующая: от синусного узла до атриовентрикулярного узла - 0,5...0,8 м/с; в атриовентрикулярном узле - 0,02...0,05; по проводящей сис­теме желудочков - до 4,0; в сократительной мышце желудоч­ков - 0,4 м/с.

    Непосредственная связь проводящей системы сердца с рабочи­ми кардиомиоцитами осуществляется с помощью многочисленных разветвлений волокон Пуркинье. Передача сигналов происходит электрическим путем с небольшой задержкой. Эта задержка воз­буждения способствует суммированию импульсов, неодновременно поступающих по волокнам Пуркинье, и обеспечивает лучшую син­хронизацию процесса возбуждения рабочего миокарда.

    В рабочем миокарде имеются контакты как между торцами, так и боковыми поверхностями волокон. Поэтому возбуждение от ос­новных стволов проводящей системы (ножек пучка Гиса) практи­чески одновременно распространяется на правый и левый желу­дочки, обеспечивая их одновременное сокращение.

    Направление возбуждения внутри желудочков различно у жи­вотных разного вида. Так, у собак возбуждение вначале возникает на расстоянии нескольких миллиметров от внутренней поверхно­сти мышечной стенки, а затем переходит к эндокарду и эпикарду. У копытных (у коз) направление распространения возбуждения в толще мышечной стенки меняется много раз, и множество воло­кон в районах эндокарда, эпикарда и в глубине стенки активиру­ется практически одновременно.

    В межжелудочковой перегородке возбуждение начинается в
    центральной части и движется к верхушке и атриовентрикулярной
    перегородке, причем верхняя часть желудочков активируется поз- ]
    же; однако на правой и левой сторонах межжелудочковой перего­
    родки возбуждение возникает одновременно. j

    Особенности распространения возбуждения в сердце име­ют значение при анализе электрокардиограммы - записи био­токов сердца.

    Сократимость. Сокращение - специфический признак воз­буждения сердечной мышцы. Как и в других мышцах, сокращение сердечных мышечных волокон начинается после распространения потенциала действия по поверхности клеточных мембран и явля­ется функцией миофибрилл. Сократительная система миофиб-рилл представлена четырьмя белками - актином, миозином, тро-понином и тропомиозином. Сокращение миофибрилл сердца в принципе не отличается от сокращений скелетных мышц соглас­но теории скольжения протофибрилл Хаксли.

    Суть теории Хаксли заключается в скольжении тонких актино-вых нитей в промежутки между толстыми миозиновыми нитями, ; что приводит к укорочению саркомера. При расслаблении мышцы актиновые нити отодвигаются назад, занимая исходное положение. В механизме скольжения актиновых нитей имеет значение каль­ций, депонированный в саркоплазматическом ретикулуме.

    Последовательность электрических и механических процессов при сокращении сердечных мышечных волокон в настоящее вре­мя представляется следующим образом. Потенциал действия, воз­никший на поверхности мембраны мышечного волокна, по попе­речным Т-трубочкам, которые являются впячиваниями наружной мембраны, достигает системы поперечных трубочек, соединенных с цистернами саркоплазматического ретикулума. Полости сарко-плазматического ретикулума не сообщаются ни с Т-трубочками, ни с интерстициальной жидкостью и заполнены раствором с вы­соким содержанием ионов кальция. Полости Т-трубочек имеют такой же состав, что и межклеточная жидкость.

    Во время возбуждения активируются натриевые каналы в мембра­нах Т-трубочек и в миоплазму входят ионы натрия и кальция из меж­клеточной жидкости. Большая часть входящего кальция не участвует в сокращении миофибрилл, а пополняет его запасы в саркоплазма­тическом ретикулуме. Под воздействием потенциала действия повы­шается проницаемость мембраны саркоплазматического ретикулума и ионы кальция вьщеляются из него в миоплазму. Ионы кальция связываются с тропонином, что вызывает конформационные изме­нения в его молекуле. Сдвиг тропонин-тропомиозинового стержня I обеспечивает взаимодействие нитей актина и миозина (напомним, Щ что в расслабленной мышце актиновые волокна прикрыты молеку- 1 лами тропонина и тропомиозина, образующими комплекс, препят­ствующий скольжению протофибрилл).


    После освобождения актиновых нитей от блокировки тропо-миозиновым комплексом миозиновые головки присоединяются к соответствующему центру актиновых нитей под углом 90°. Затем наступает спонтанный поворот головки на 45°, развивается напря­жение и происходит продвижение актиновой нити на один шаг. Эти процессы осуществляются за счет энергии АТФ, причем рас­пад АТФ катализируется актомиозиновым комплексом, обладаю­щим АТФ-азной активностью.

    Когда возбуждение прекращается, содержание ионов кальция в миоплазме снижается вследствие работы кальциевого насоса и закачивания кальция в саркоплазматический ретикулум, причем на работу кальциевого насоса также затрачивается энергия АТФ. В результате снижения содержания кальция в миоплазме тропо-миозиновый комплекс защищает активные центры актомиозино-вых нитей. Нити миозина и актина восстанавливают исходное по­ложение, и мышца расслабляется.

    Изложенная теория сокращения сердечной мышцы во многом объясняет экспериментальные и клинические наблюдения о влия­нии кальция и магния - его антагониста на работу сердца. Извест­но, что при перфузии изолированного сердца раствором, не содер­жащим кальция, оно останавливается, а при добавлении кальция в перфузионный раствор сокращения восстанавливаются. Известно также, что сердечные глюкозиды (например, препараты наперстян­ки) увеличивают проницаемость мембран для кальция и тем самым восстанавливают транспорт кальция между саркоплазматическим ретикулумом, наружной мембраной и миоплазмой.

    Согласуется с теорией мышечного сокращения и благоприятное влияние на сердце макроэргических веществ, энергия которых ис­пользуется не только для механического сокращения, но и для ра­боты ионных насосов - кальциевого и калиево-натриевого.

    Сократительные свойства сердечной мышцы несколько отли­чаются от скелетных. Если скелетная мышца реагирует на раздра­жение в соответствии с его силой, то сердечная мышца подчиня­ется закону Боудича «все или ничего». Его суть заключается в том, что на подпороговые раздражения сердце не сокращается («ниче­го»), а на пороговое раздражение отвечает максимальным сокра­щением («все»), и увеличение силы раздражителя не приводит к увеличению силы сокращения.

    В скелетных мышцах закону «все или ничего» подчиняются отдельные мышечные волокна. Дело в том, что потенциал дей­ствия вызывает освобождение кальция из саркоплазматического ретикулума равномерно по всей длине волокна, поэтому оно со­кращается полностью. Но в скелетной мышце имеются волокна с разной степенью возбудимости, поэтому при слабом раздражении сокращаются не все волокна и суммарное сокращение оказывает­ся небольшим. В сердечной же мышце волокна рабочего, т. е. со­кратительного, миокарда соединены межклеточными контактами


    (выростами плазматических мембран), что способствует практи­чески одновременному распространению потенциала действия по всей мышце, и она возбуждается и сокращается как единый орган, 1 являясь функциональным синцитием.

    Закон Боудича является скорее правилом с определенными ог­раничениями. При подпороговом раздражении сокращение, дей­ствительно, не возникает, но в это время начинается активация натриевых каналов и повышается возбудимость миокардиоцитов. Возникающие местные потенциалы могут суммироваться и вы­звать распространяющийся потенциал действия. С другой сторо­ны, сила сокращения сердца, как хорошо известно, непостоянна и может изменяться в различных условиях жизни.

    Другая характерная особенность сердечной мышцы заключает­ся в том, что сила сокращения сердца зависит от степени растяже­ния мышечных волокон во время диастолы, когда полости запол­няются кровью. Это - закон Франка - Старлинга. Указанная за­кономерность объясняется тем, что при растяжении сердца кро­вью во время диастолы актиновые нити несколько вытягиваются из промежутков между миозиновыми, и при последующем сокра­щении возрастает число генерирующих силу поперечных мости­ков. Кроме того, при растягивании сердечной мышцы в ней повы­шается сопротивление упругих элементов, и во время сокращения они играют роль «пружины», увеличивая силу сокращения.

    Особенно важное значение закон Франка - Старлинга имеет во время усиленной работы сердца, когда возрастает объем крови, по­ступающей в него во время диастолы. Увеличение силы сокращения приводит к тому, что вся кровь выбрасывается при систоле желудоч­ков в артериальные сосуды, иначе после каждого сокращения в серд­це оставалась бы значительная порция крови. При отсутствии боль­шой нагрузки и небольшом объеме кровотока сила сокращения серд­ца умеренная. Таким образом сердце способно регулировать в извест­ных пределах силу сокращения в зависимости от объема кровотока.


    ©2015-2019 сайт
    Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
    Дата создания страницы: 2017-04-01

    СТРОЕНИЕ СТЕНКИ СЕРДЦА

    Стенка сердца состоит из трех слоев: внутреннего - эндокарда , среднего -миокарда и наружного - эпикарда .

    Эндокард выстилает изнутри поверхность камер сердца, он образован особым видом эпителиальной ткани -эндотелием . Эндотелий имеет очень гладкую, блестящую поверхность, что обеспечивает уменьшение трения при движении крови в сердце.

    Миокард составляет основную массу стенки сердца.

    Он образован поперечно -полосатойсердечной мышечной тканью , волокна которой в свою очередь располагаются в несколько слоев. Миокард предсердий значительно тоньше, чем миокард желудочков. Миокард левого желудочка в три раза толще, чем миокард правого желудочка. Степень развитости миокарда зависит от величины работы, которую выполняют камеры сердца. Миокард предсердий и желудочков разделен слоем соединительной ткани (фиброзное кольцо), что дает возможность поочередного сокращения предсердий и желудочков.

    Эпикард - это особая серозная оболочка сердца, образованная соединительной и эпителиальной тканью.

    ОКОЛОСЕРДЕЧНАЯ СУМКА (ПЕРИКАРД)

    Это своеобразный замкнутый мешок, в который заключено сердце. Сумка состоит из двух листков. Внутренний листок срастается по всей поверхности с эпикардом. Наружный листок как бы покрывает сверху внутренний листок. Между внутренним и наружным листком имеется щелевидная полость -перикардиальная полость ), заполненная жидкостью. Сама сумка и жидкость, находящаяся в ней, выполняют защитную роль и уменьшают трение сердца при его работе. Сумка способствует фиксации сердца в определенном положении.

    КЛАПАНЫ СЕРДЦА

    Работа клапанов сердца обеспечивает одностороннее движение крови в сердце.

    К собственно сердечным клапанам относятся створчатые клапаны , располагающиеся на границе предсердий и желудочков. В правой половине сердца находитсятехстворчатый клапан , в левой -двустворчатый (митральный). Створчатый клапан состоит из трех элементов: 1) створки , имеющей форму купола, и образованной плотной соединительной тканью, 2) сосочковой мышцы, 3) сухожильных нитей , натянутых между створкой и сосочковой мышцей. При сокращении желудочков створчатые клапаны закрывают просвет между предсердием и желудочком. Механизм работы этих клапанов следующий: при повышении давления в желудочках кровь устремляется в предсердия, поднимая створки клапанов, и они смыкаются, перерывая просвет между предсердием и желудочком; створки не выворачиваются в сторону предсердий, т.к. их удерживают сухожильные нити, натягивающиеся за счет сокращения сосочковой мышцы.



    На границе желудочков и сосудов, отходящих от них (аорта и легочный ствол), располагаются полулунныеклапаны , состоящие из полулунных заслонок . В названных сосудах по три таких заслонки. Каждая полулунная заслонка имеет форму тонкостенного кармашка, вход в который открыт в сторону сосуда. Когда кровь изгоняется из желудочков, полулунные клапаны прижаты к стенкам сосуда. Во время расслабления желудочков кровь устремляется в обратном направлении, наполняет "кармашки", они отходят от стенок сосуда и смыкаются, перекрывая просвет сосуда, не пропуская кровь в желудочки. Полулунный клапан, располагающийся на границе правого желудочка и легочного ствола, называется пульмональный клапан , на границе левого желудочка и аорты - аортальный клапан.

    Функции сердца

    Функция сердца состоит в том, что миокард сердца во время сокращения перекачивает кровь из венозного в артериальное сосудистое русло. Источником энергии, необходимой для движения крови по сосудам является работа сердца. Энергия сокращения миокарда сердца преобразуется в давление, сообщаемое порции крови, выталкиваемой из сердца во время сокращения желудочков. Давление крови - это сила, которая расходуется на преодоление силы трения крови о стенки сосудов. Разность давлений в разных участках сосудистого русла - главная причина движения крови. Движение крови в сердечно-сосудистой системе в одном направлении обеспечивается работой сердечных и сосудистых клапанов.

    Свойства сердечной мышцы

    К основным свойствам сердечной мышцы относятся автоматия, возбудимость, проводимость исократимость .

    1. Автоматия - это способность к ритмическому сокращению без всяких внешних воздействий под влиянием импульсов, возникающих в самом сердце. Ярким проявлением этого свойства сердца является способность извлеченного из организма сердца при создании необходимых условий сокращаться в течение часов и даже суток. Природа автоматии до сих пор до конца не выяснена. Но однозначно ясно, что возникновение импульсов связано с деятельностью атипических мышечных волокон , заложенных в некоторых участках миокарда. Внутри атипических мышечных клеток спонтанно генерируются электрические импульсы определенной частоты, распространяющиеся затем по всему миокарду. Первый такой участок находится в области устьев полых вен и называется синусный , или синоатриальныйузел . В атипических волокнах этого узла спонтанно возникают импульсы с частотой 60-80 раз в минуту. Он является главным центром автоматии сердца. Второй участок находится в толще перегородки между предсердиями и желудочками и называется предсердно-желудочковый , или атриовентрикулярный узел . Третий участок - это атипические волокна, составляющие пучок Гиса , лежащий в межжелудочковой перегородке. От пучка Гиса берут начало тонкие волокна атипической ткани - волокна Пуркинье , ветвящиеся в миокарде желудочков. Все участки атипической ткани способны генерировать импульсы, но их частота самая высокая в синусном узле, поэтому его называют водителем ритма первого порядка (пейсмекером первого порядка) , и все другие центры автоматии подчиняются этому ритму.

    Совокупность всех уровней атипической мышечной ткани составляют проводящую систему сердца . Благодаря проводящей системе волна возбуждения, возникшая в синусном узле, последовательно распространяется по всему миокарду.

    2. Возбудимость сердечной мышцы заключается в том, что под действием различных раздражителей (химических, механических, электрических и др.) сердце способно приходить в состояние возбуждения. В основе процесса возбуждения лежит появление отрицательного электрического потенциала на наружной поверхности мембран клеток, подвергшихся действию раздражителя. Как и в любой возбудимой ткани, мембрана мышечных клеток (миоцитов) поляризована. В покое она снаружи заряжена положительно, изнутри - отрицательно. Разность потенциалов определяется различной концентрацией ионов N а + и К + по обе стороны мембраны. Действие раздражителя увеличивает проницаемость мембраны для ионов К + и Nа + , происходит перестройка мембранного потенциала(калий - натриевый насос ), в результате возникает потенциал действия, распространяющийся и на другие клетки. Таким образом происходит распространение возбуждения по всему сердцу.

    Импульсы, возникшие в синусном узле, распространяются по мускулатуре предсердий. Дойдя до атриовентрикулярного узла, волна возбуждения распространяется по пучку Гиса, а затем по волокнам Пуркинье. Благодаря проводящей системе сердца наблюдается последовательное сокращение частей сердца: сначала сокращаются предсердия, затем желудочки (начиная с верхушки сердца волна сокращения распространяется к их основанию). Особенность атриовентрикулярного узла - проведение волны возбуждения только в одном направлении: от предсердий к желудочкам.

    3. Сократимость - это способность миокарда сокращаться. Оно основано на способности самих клеток миокарда отвечать на возбуждение сокращением. Это свойство сердечной мышцы определяет способность сердца выполнять механическую работу. Работа сердечной мышцы подчиняется закону "все или ничего" .Суть этого закона состоит в следующем: если на сердечную мышцу наносить раздражающее действие различной силы, мышца отвечает каждый раз максимальным сокращением ("все "). Если сила раздражителя не достигает порогового значения, то сердечная мышца не отвечает сокращением ("ничего ").

    Автоматия - способность сердечной мышцы к ритмическому сокращению без всяких внешних воздействий под влиянием импульсов, возникающих в самом сердце. Благодаря автоматии автономное (извлеченное из организма) сердце способно некоторое время самостоятельно сокращаться. Импульсы в сердечной мышце возникают благодаря деятельности атипических мышечных волокон, заложенных в некоторых участках миокарда - внутри них спонтанно генерируются электрические импульсы определенной частоты, распространяющиеся затем по всему миокарду. Первый такой участок находится в области устьев полых вен и называется синусовым , или синоатриальным, узлом. Он производит импульсы с частотой 60-80 раз в минуту и является главным центром автоматии сердца. Второй участок находится в толще перегородки между предсердиями и желудочками и называется предсердно-желудочковым, или атриовентрикулярным , узлом. Третий участок - пучок Гиса - атипические волокна, лежащие в межжелудочковой перегородке. От пучка Гиса отходят тонкие волокна атипической ткани - волокна Пуркинье, разветвляющиеся в миокарде желудочков. Все участки атипической ткани способны самостоятельно генерировать импульсы; в синусовом узле их частота самая высокая, его называют водителем ритма первого порядка, другие центры автоматии подчиняются этому ритму. Совокупность всех центров автоматии составляют проводящую систему сердца, благодаря которой волна возбуждения, возникшая в синусном узле, последовательно распространяется по всему миокарду и обеспечивает последовательное сокращение отделов сердца.

    Возбудимость сердечной мышцы проявляется в способности сердца приходить в состояние возбуждения под действием различных раздражителей (химических, механических, электрических и др.). Потенциал действия, возникающий в одной клетке, передается другим клеткам, что приводит к распространению возбуждения по всему сердцу.

    Сократимость - способность полости сердца сокращаться, обусловленная свойством клеток миокарда отвечать на возбуждение сокращением. Это свойство сердечной мышцы позволяет сердцу выполнять механическую работу по перекачиванию крови по сосудам: при сокращении полости сердца давление крови в сердечных камерах возрастает, и кровь под давлением поступает в артерии. Работа сердечной мышцы подчиняется закону «все или ничего»: если на сердечную мышцу оказывать раздражающее действие различной силы, мышца каждый раз отвечает максимальным сокращением. Если сила раздражителя не достигает порогового значения, то сердечная мышца не отвечает сокращением.

    В работе сердца как насоса выделяют три фазы, сокращение предсердий, сокращение желудочков и пауза, когда желудочки и предсердия одновременно расслаблены. Сокращение сердца называется систолой , расслабление - диастолой. Во время систолы предсердий кровь выталкивается в желудочки, так как обратный кровоток в вены невозможен из-за захлопывания клапанов, во время систолы желудочков кровь устремляется в большой и малый круги кровообращения (обратному току в предсердия препятствуют митральный и трехстворчатый клапаны, расположенные между предсердиями и желудочками), а за время диастолы камеры сердца находятся в расслабленном состоянии и вновь заполняются кровью. За одну минуту сердце взрослого здорового человека сокращается примерно 60-70 раз. Ритмичное чередование сокращения и расслабления каждого из отделов сердца обеспечивает неутомляемость сердечной мышцы.

    Иннервация сердца очень сложна. Она осуществляется вегетативной нервной системой - блуждающим и симпатическими нервами, в составе которых имеются как чувствительные, так и двигательные волокна. В стенке самого сердца находятся нервные сплетения, состоящие из нервных узлов и нервных волокон. Двигательные нервы сердца осуществляют четыре основные функции: замедление, ускорение, ослабление и усиление деятельности сердца. Эти нервы относятся к вегетативной нервной системе. Таким образом, сердечная мышца, обладая способностью к самостоятельным сокращениям, подчиняется также «командам сверху» - регулирующему воздействию нервной системы, обеспечивающему оптимальную адаптацию сердечной деятельности потребностям организма в конкретной ситуации.

    Сосудистая система. Кровеносные сосуды представляют собой систему полых эластичных трубок различного строения, диаметра и механических свойств, по которым протекает кровь. Сосуды подразделяются на артерии, вены и капилляры.

    Артерии имеют толстые упругие стенки, состоящие из грех слоев. Наружный слой представляет собой соединительнотканную оболочку, средний слой состоит из гладкой мышечной ткани и содержит соединительнотканные эластические волокна, внутренний слой образован эндотелием, под которым расположена внутренняя эластическая мембрана. Эластические элементы артериальной стенки образуют единый каркас, работающий как пружина и обусловливающий эластичность артерий.

    Разветвляясь, артерии переходят в артериолы , которые отличаются от артерий наличием только одного слоя мышечных клеток и могут регулировать скорость кровотока за счет сужения или расширения просвета. Артериола переходит в прекапилляр, в котором мышечные клетки разрознены и не составляют сплошного слоя. От него отходят многочисленные капилляры - самые мелкие кровеносные сосуды, которые соединяют артериолы с венулами (мелкими разветвлениями вен). Благодаря очень тонкой стенке капилляров в них происходит обмен различными веществами между кровью и клетками тканей. В зависимости от потребности в кислороде и других питательных веществах разные ткани имеют разное количество капилляров. Капилляры могут находиться в активном (открытом) и пассивном (закрытом) состоянии. При активизации обменных процессов или потребности в усиленной теплоотдаче объем крови, проходящей через орган, может увеличиваться за счет активизации дополнительного числа капилляров. В покое и при уменьшении теплоотдачи значительное количество капилляров переходит в пассивное состояние, уменьшая таким образом объем кровотока. Состояние капиллярной сети регулируется вегетативной нервной системой в зависимости от потребностей организма.

    Сливаясь, капилляры переходят в посткапилляры , которые но строению аналогичны прекапилляру. Посткапилляры сливаются в венулы с просветом 40-50 мкм. Венулы объединяются в более крупные сосуды, несущие кровь к сердцу, - вены. Они, так же как и артерии, имеют стенки, состоящие из трех слоев, по содержат меньше эластических и мышечных волокон, поэтому менее упруги, их просвет поддерживается током крови. Вены имеют клапаны (полулунные складки внутренней оболочки), которые открываются по току крови, что способствует движению крови в одном направлении. Схематически строение кровеносных сосудов представлено на рис. 4.6.

    Рис. 4.6.

    Человек и все позвоночные животные имеют замкнутую кровеносную систему. Кровеносные сосуды сердечно-сосудистой системы образуют две основные подсистемы: большой и малый круги кровообращения (рис. 4.7).

    Сосуды большого круга кровообращения соединяют сердце со всеми другими частями тела. Большой круг кровообращения начинается в левом желудочке, откуда выходит аорта, а заканчивается в правом предсердии, куда впадают полые вены. Как часть большого круга кровообращения выделяют третий (сердечный) круг, снабжающий кровью само сердце. Он состоит из двух венечных, или коронарных, артерий, отходящих от аорты, и впадает в правое предсердие через венечную пазуху.

    Сосуды малого круга кровообращения переносят кровь от сердца к легким и обратно. Малый круг кровообращения начинается правым желудочком, из которого выходит легочный ствол, а заканчивается левым предсердием, в которое впадают легочные вены.

    Рис. 4.7.

    1 - сердце; 2 - малый (легочный) круг кровообращения; 3 - большой круг кровообращения

    Сердечная мышца, как и скелетные мышцы, обладает свойством возбудимости, способностью проводить возбуждение и сократимостью. К физиологическим особенностям сердечной мышцы относятся удлиненный рефрактерный период и автоматизм.

    1. Возбудимость сердечной мышцы. Сердечная мышца менее возбудима, чем скелетная. Для возникновения возбуждения в сердечной мышце необходим более сильный раздражитель, чем для скелетной. Установлено, что реакция сердечной мышцы не зависит от силы наносимых раздражений (электрических, механических и т.д.). Сердечная мышца максимально сокращается и на пороговое и на более сильное по величине раздражение.

    2. Проводимость. Волны возбуждения проводятся по волокнам сердечной мышцы и так называемой специальной ткани сердца с неодинаковой скоростью. Возбуждение по волокнам мышц предсердий распространяется со скоростью 0,8-1,0 м/с, по волокнам мышц желудочков – 0,8-0,9 м/с, по специальной ткани сердца – 2,0-4,2 м/с. Возбуждение же по волокнам скелетной мышцы распространяется с гораздо большей скоростью, которая составляет 4,7 –5 м/с.

    3. Сократимость сердечной мышцы имеет свои особенности. Первыми сокращаются мышцы предсердий, затем – сосочковые мышцы и субэндокардиальный слой мышц желудочков. В дальнейшем сокращение охватывает и внутренний слой желудочков, обеспечивая тем самым движение крови из полостей желудочков в аорту и легочный ствол. Сердце для осуществления механической работы (сокращения) получает энергию, которая освобождается при распаде макроэргических фосфорсодержащих соединений (креатинфосфат, аденозинтрифосфат).

    4. Рефрактерный период – это период невосприимчивости мышцы сердца к действию других раздражителей. В отличие от других возбудимых тканей сердце имеет значительно выраженный и удлиненный рефрактерный период. Благодаря выраженному рефрактерному периоду, длящемуся дольше, чем период систолы, сердечная мышца не способна к длительному сокращению и совершает работу по типу одиночного мышечного сокращения

    5. Автоматизм – способность сердечной мышцы приходить в состояние возбуждения и ритмического сокращения без внешних воздействий. Обеспечивается проводящей системой, состоящей из синусно-предсердного, предсердно-желудочкового узлов и предсердно-желудочкового пучка. Миокард функцией автоматизма не обладает.

    Большой и малый круг кровообращения

    Деление на большой и малый круги кровообращения условно: они сообщены между собой, один является продолжением другого, т.е. два круга включены последовательно, это замкнутая система.

    Две части сердечно-сосудистой системы названы так потому, что каждая из них начинается в сердце и возвращается в сердце, но по отдельности замкнутых кругов они не образуют. Фактически имеется один общий замкнутый круг кровообращения. Из левого желудочка кровь поступает в аорту, далее по артериям она следует в капилляры всех органов и тканей организма, по венам возвращается в правое предсердие, правый желудочек и по легочной артерии поступает в легкие. Из легких по легочным венам артериальная кровь течет в левое предсердие и далее – в левый желудочек. Циркуляция крови по сосудам возможна только при наличии их тонуса, поскольку суммарный объем расслабленных сосудов больше объема крови. Кровь циркулирует по кругу в результате циклической деятельности сердца, главной функцией которого является нагнетание крови в артериальную систему организма.


    Гемодинамика

    Несмотря на ритмические сокращения сердца и поступление крови в сосуды порциями, в сосудах она течет непрерывно. Это обеспечивается эластичностью стенок артерий, которые во время систолы растягиваются, а во время диастолы спадаются и обеспечивают непрерывный ток крови. Давление, под которым кровь находится в сосудах, называется кровяным и постепенно меняется в зависимости от фазы сердечного цикла. Во время систолы желудочков кровь с силой выбрасывается в аорту, давление при этом максимально - это систолическое, или максимальное, давление. Во время диастолы давление понижается - диастолическое , или минимальное. Разность между систолическим и диастолическим давлением называется пульсовым давлением. В норме пульсовое давление равно 40 (35-55) мм рт. ст. Среднединамическое давление – это сумма минимального и одной трети пульсового давления. Выражает энергию непрерывного движения крови и представляет собой постоянную величину для данного сосуда и организма.

    На величину артериального давления влияют различные факторы: возраст, положение тела, время суток, место измерения (правая или левая рука), состояние организма, физические и эмоциональные нагрузки и т.д.

    Самое высокое давление в аорте (130 мм рт. ст.), в крупных артериях оно понижается на 10 % и в плечевой артерии составляет 110-125 мм рт. ст. (систолическое) на 60-85 мм рт. ст. (диастолическое). В капиллярах снижается до 15-25 мм рт. ст. Из капилляров кровь поступает в венулы (12-15 мм рт. ст.), затем в вены (3-5 мм рт. ст.). В полых венах давление составляет всего 1-3 мм рт. ст., а в самом предсердии равно нулю.

    Скорость кровотока в различных участках кровяного русла неодинакова Скорость кровотока в различных участках кровяного русла неодинакова. Она зависит от суммарного просвета кровеносных сосудов данного вида. Чем меньше просвет, тем больше скорость тока крови, и наоборот. Самой узкой частью в кровеносной системе является аорта, в ней скорость самая высокая -0,5-1 м/с. Суммарный просвет всех капилляров в 1000 раз больше просвета аорты, соответственно, и скорость тока крови в 1000 раз меньше, чем в аорте (0,5-1 мм/с). Физиологический смысл медленного течения крови в капиллярах - газообмен, переход питательных веществ из крови и продуктов обмена веществ из тканей. Удетей скорость кровотока выше за счет частых сердечных сокращений. У новорожденного полный кругооборот совершается за 12 с, в возрасте 3 года -за 15 с, в 14 лет -за 18 с, у взрос-лых - за 22 с. С возрастом кругооборот крови замедляется, что связано со снижением эластичности сосудов и увеличением их длины.

    У детей давление значительно ниже, чем у взрослых. Это связано с тем, что у детей больше развита капиллярная сеть и шире просвет кровеносных сосудов. В период полового созревания рост сердца опережает рост кровеносных сосудов. Это выражается в так называемой юношеской гипертензии, которая с возрастом проходит. У здорового человека давление поддерживается на постоянном уровне, но повышается при мышечной деятельности, эмоциональных состояниях.



    Понравилась статья? Поделитесь с друзьями!
    Была ли эта статья полезной?
    Да
    Нет
    Спасибо, за Ваш отзыв!
    Что-то пошло не так и Ваш голос не был учтен.
    Спасибо. Ваше сообщение отправлено
    Нашли в тексте ошибку?
    Выделите её, нажмите Ctrl + Enter и мы всё исправим!