Упражнения. Питание. Диеты. Тренировки. Спорт

Силовые характеристики мышечной системы. Измерение мышечной силы кистей и становой силы Для измерения мышечной силы у человека

Мышечную силу определяют методом действия и противодействия, т. е. больного просят выполнять свойственное для сустава движение и, противодействуя рукой исследующего, определяют напряжение мышц. Силу мышц оценивают по 5-балльной системе: 5 баллов - мышцы здоровой конечности, 4 балла - незначительная атрофия мышц, но сила позволяет преодолеть вес сегмента конечности и препятствие, создаваемое рукой исследователя. Однако сопротивление слабее, чем на здоровой конечности. 3 балла - умеренная атрофия мышц с активным преодолением веса сегмента, но без сопротивления. 2 балла - выраженная атрофия, мышцы с трудом сокращаются, но без веса сегмента. 1 балл - выраженная атрофия мышц, сокращений нет.

Лабораторные: Клинические анализы

Под клиническими исследования понимают в первую очередь, общие анализы крови, мочи и кала. Это тот минимум лабораторных исследований, без которого пострадавшему невозможно провести полноценную терапию, а тем более выполнить хирургическое вмешательство без риска получить тяжелое осложнение или даже летальный исход.

Исследование крови проводят с подсчетом количества эритроцитов, лейкоцитов и лейкоформулы, определением уровня содержания гемоглобина, цветового показателя, гематокритного числа, СОЭ. Если предполагается оперативное вмешательство, есть подозрение на продолжающееся внутритканевое или внутриполостное кровотечение, исследование дополняют подсчетом тромбоцитов, ретикулоцитов, определением времени свертываемости и длительности кровотечения.

Приводим примерные нормальные показатели, перечисленных инградиентов исследований у взрослого человека. Почему примерные? Да потому, что они имеют колебания в зависимости от возраста, пола, иногда времени суток и места жительства исследуемого. Приводим средние цифры норм для центральной зоны России без учета экстремальных климатических районов Крайнего Севера, Северо-Востока, Юга.

Количество эритроцитов: Мужчины (4,0…5,5) х10 12/л; Женщины (3,6…5,0) х10 12/л.

Количество лейкоцитов: (4,0…4,8) х10 12/л

Гематокритное число – соотношение объемов эритроцитов и плазмы циркулирующей

крови: Мужчины - 0,380 – 0,480; Женщины – 0,330 – 0, 450;

Тромбоциты (180…320) х 10 9/л

Ретикулоциты (молодые формы эритроцитов) в норме в циркулирующей крови их от 0,2 до

1%, т. е. (30…70) х 10 9/л

Длительность кровотечения (по Дьюку) – 2-3 минуты

Время свертываемости крови (по Сухареву) – начало от 30 секунд до 2 минут.

Конец от 3 до 5 минут.

Лейкоформула –процентное содержание разных лейкоцитов в мазке крови. Исследование практически не специфическое, но очень важное, так как является показателем тяжести состояния больного.

Моча – определяют количество, цвет, прозрачность, плотность (норма 1,008-1,025, колеблется в течение суток). РН – 4.5 – 8. 0. Пробы на белок, глюкозу, билирубин – должны быть отрицательные.

При травмах – исследование на наличие крови. Положительная реакция указывать на повреждение мочеполовых органов и мочевыводящих путей. При тяжелых травмах – олигурия, анурия указывают на тяжесть состояния больного и являются прогностически плохим признаком.

Кал – наличие крови в кале после травмы подтверждает повреждение кишечника, другие отклонения от нормы могут указывать на сопутствующие заболевания: нарушение фукнции печени, поджелудочной железы, гельминты и. т. д.

Из общеклинических анализов важное значение имеют исследование жидкостей, полученных из серозных полостей: плевральной, перикарда, брюшной полости, сустава, люмбальной. Содержимое этих полостей при травмах может говорить о многом. Наличие крови в плевральной полости указывает на гематоракс или продолжающееся кровотечение. То же самое можно получит из брюшной полости, но в отличие от плевральной, содержимым ее может быть транссудат с примесью мочи, желчи, содержимого кишечника и даже остатков пищи, что указывает на катастрофу соответствующих органов.

Для исследования мышечной силы используются специальные приемы, при которых нагрузка падает только на отдельные мышцы и группы мышц. Исследуемого просят выполнить определенные движения в условиях сопротивления, о чем говорилось выше, либо наоборот - исследуемый оказывает сопротивление активным действиям врача. Там, где это возможно, обязательно сопоставляются симметричные группы мышц.
Исследование мышечной силы не проводится при локальном воспалении мышц, фасций, сухожилий, их разрыве, при ушибе, наличии гематомы.

В клинической практике мышечную силу условно подразделяют на 5 градаций:
1 - мышечная сила нормальная;
2 - мышечная сила снижена;
3 - мышечная сила резко снижена;
4 - напряжение мышцы совершается без двигательного эффекта;
5 - мышца парализована.

М. Доэрти, Д. Доэрти (1993 г.) приводят классификацию клинической оценки силы мышц, предложенную Медицинским исследовательским Советом.
Можно пользоваться упрощенным подразделением мышечной силы на нормальную, ослабленную (сниженную), ее отсутствие.

Некоторые приемы исследования мышечной силы в условиях сопротивления были приведены при описании исследования двигательной функции мышц. Приводим другие.
Определение силы мышц плечевого пояса . Исследуемый, согнув руки в локтевых суставах, поднимает их до уровня плеч и удерживает в таком положении. Врач, положив руки на локтевые суставы сверху, оказывает давление вниз. По степени сопротивления оценивается сила мышц плечевого пояса.

Определение силы мышц, сгибающих предплечье . Исследуемый сгибает руку в локтевом суставе и удерживает ее в таком положении. Врач делает попытку разогнуть ее, упершись одной рукой в плечо, другой захватив руку на уровне лучезапястного сустава.

Определение силы мышц, разгибающих предплечье в локтевом суставе . Рука исследуемого максимально согнута в локтевом суставе. Врач одной рукой удерживает его за плечо, другой, захватив за предплечье на уровне лучезапястного сустава, оказывает сопротивление исследуемому при разгибании руки в локтевом суставе.

Определение силы сгибателей и разгибателей кисти . Врач одной рукой фиксирует предплечье исследуемого на уровне дистальной трети предплечья, другой рукой фиксирует его ладонь (кулак), препятствуя сгибанию, а потом разгибанию кисти в лучезапястном суставе.

Определение силы мышц кисти . Врач попеременно или одновременно вкладывает указательный и средний пальцы в кисть исследуемого и просит их сжать. По степени сжатия оценивается сила сгибателей пальцев. Определение силы сгибателей бедра. Исследуемый лежит с вытянутыми ногами. Врач, положив руку на коленную чашечку или чуть выше, и, зафиксировав коленный сустав, предлагает ему согнуть ногу. По Величине усилия, приложенного к удержанию ноги в вытянутом положении, оценивается сила.

Определение силы сгибателей и разгибателей стопы . Исследуемый лежит на спине со стопами, свисающими над краем кушетки. Врач одной рукой фиксирует голень, другой, захватив стопу в дистальном отделе, оказывает Сопротивление при ее сгибании и разгибании в голеностопном суставе.

Определение силы мышц сгибающих и разгибающих пальцы стопы . Врач фиксирует пальцы стопы их поперечным захватом между большим и указательным пальцами и просит исследуемого выполнить сгибание и разгибание пальцев.


В литературе имеются описания разнообразных положений испытуемых при измерении силы мышц (стоя, лежа, сидя). От исходного положения при измерении существенно зависит абсолютная сила мышц: например, сила разгибателей бедра, измеренная при положении стоя и лежа, имеет различие до 20%.

При измерении силы мышц необходимо соблюдать следующие правила:

1) лучшее время проведения измерений – первая половина дня, через 2,5-3 часа после еды;

2) необходима разминка в течение 10-15 минут без отягощений;

3) температура окружающей среды должна быть от + 18 до +22°:

4) положение испытуемого – вертикальное;

5) обязательная фиксация проксимальных суставов и сохранение постоянным положения дистальных суставов;

6) плечо приложения силы у всех испытуемых должно быть постоянным, так как во всех случаях измеряется не сила, а момент силы мышц;

7) угол между динамометром и звеном (бедром, голенью) обязательно должен быть прямым;

8) при изучении взаимосвязи силы мышц и технических параметров выполнения движений целесообразно проводить измерения с учетом индивидуальных рабочих углов;

9) манжета, к которой крепится динамометр, должна быть не менее 5 см шириной для устранения болевого компонента;

10) измерение силы после тренировок и на следующий день после соревнований не целесообразно, кроме специальных исследований;

11) при сопоставлении силы мышц-сгибателей и разгибателей, действующих на одно звено, необходимо производить измерения со строгим учетом исходного состояния мышц (их растянутости);

12) силу мышц целесообразно измерять на всей амплитуде движения через каждые 10° для крупных суставов и 5° – для мелких.

Измерение силы по методике А. В. Коробкова с соавт. производится на измерительном станке, который позволяет добиться изолированного действия определенной группы мышц. Станок состоит из металлической рамы, плотно укрепленной на шести ножках. Вдоль рамы перемещается вертикальная стойка с поперечной передвижной планкой, к которой во время проведения эксперимента укрепляется датчик. Внутри рамы укрепляется деревянная площадка с подголовником с одной стороны и планкой для упора ног – с другой. Рама снабжена ремнями, с помощью которых обеспечивается неподвижность измеряемого. Исходное положение испытуемого для всех измерений – лежа на спине или животе. Недостатком метода является то, что измерения проводятся без учета состояния мышц. их растянутости, а также возможность проводить измерение только при наличии прямого угла между проксимально и дистально расположенными звеньями. Отсутствует возможность измерять силу мышц при пронации и супинации.

Измерение силы мышц по методике Б. М. Рыбалко проводится с использованием специального приспособления, состоящего из опорного щита с ремнями, который укрепляется на гимнастической стенке и служит опорой и фиксацией испытуемого при измерении; подставки, которая создает возможность для фиксации стопы при измерении и укрепления динамометра, кронштейна, крепленного к гимнастической стойке и служащего верхней опорой для динамометра. Исходное положение измеряемого – вертикальное. Недостатки метода те же, что и для методики А. В. Коробкова; преимущества – портативность приспособления.

Методика, разработанная на кафедре анатомии Смоленского ГИФК (Р. Н. Дорохов, Ю. Д. Кузьменко, Я. С. Татаринов, М. И. Шутков), позволяет измерить силу мышц на всей амплитуде возможного движения в суставах. Стационарный вариант измерительного приспособления состоит из опорной в 2,5 м высотой рамы, одна сторона которой имеет вид полуокружности, вдоль которой располагаются блоки, создающие возможность измерять силу мышц при любом положении конечности с сохранением обязательного условия – положение между конечностью и динамометром – 90°. В центре рамы располагается опорная вертикаль для укрепления испытуемого.

Она имеет дополнительную опорную штангу для фиксации коленного сустава, площадку с укрепленным слаломным ботинком, которая позволяет полностью исключить движение в голеностопном суставе опорной ноги, площадку для опоры и фиксации туловища. Опорное приспособление свободно вращается вокруг вертикальной оси. Это позволяет измерить силу мышц при движении вокруг сагиттальной и фронтальной осей. При измерении силы мышц туловища в центре опорной рамы устанавливается вместо опорной вертикали фиксирующее устройство для таза и нижних конечностей с меняющейся высотой укрепляющей площадки. На опорной раме укреплено также два реверсионных электромотора, которые создают возможность с помощью тросов и динамометра измерять силу мышц при преодолевающем и уступающем видах работы. Преимущество этого метода в том, что имеется возможность измерить силу мышц в специфических рабочих углах с большой точностью при движениях во всех без исключения суставах при преодолевающей, удерживающей и уступающей работе мышц. Недостаток – громоздкость.

Переносной вариант опорного приспособления для измерения силы мышц (Р. Н. Дорохов, Ю. Д. Кузьменко) представляет соединенный из труб параллелепипед, три стороны которого имеют металлические перемычки, расположенные через равные промежутки, которые позволяют при необходимости задать с помощью цепей желаемое положение исследуемому звену тела, то есть измерить силу мышц при любом их состоянии (растянутости). Четвертая сторона снабжена подвижной рамой с ремнями и опорными скобами, с помощью которых испытуемый закрепляется в нужном положении, исключаются добавочные движения. Опорные скобы и рама могут быть подогнаны под любой рост испытуемого, что весьма существенно при измерениях в школах. С целью сохранения постоянной силы мышц плеча, изготовлены аппараты каркасного типа, которые надеваются на звено тела, сила которого изучается.

Достоинства – возможность разобрать приспособление и легко транспортировать его, возможность измерить силу в «рабочих углах».

 10 декабря

«Зожник» перевел, переработал и отредактировал грандиозную базовую статью Грега Нуколса о том, как взаимосвязан объем и сила мышц. В статье подробно объясняется, к примеру, почему средний пауэрлифтер на 61% сильнее среднего бодибилдера при том же объеме мышц.

Наверняка вам встречалась такая картина в спортзале: огромный мускулистый парень делает приседания с 200-килограммовой штангой, пыхтя и делая небольшое количество повторений. Затем с такой же штангой работает парень с намного менее массивными ногами, но легко делает большее количество повторений.

Аналогичная картина может повторяться и в жиме или становой. Да и из курса школьной биологии нас учили: сила мышцы зависит от площади поперечного сечения (грубо говоря - от толщины), однако наука показывает, что это сильное упрощение и дело обстоит не совсем так.

Площадь поперечного сечения мышцы.

В качестве примера посмотрите, как 85-килограммовый парень жмет от груди 205 кг:

Однако гораздо более массивные ребята не могут приблизиться к таким показателям в жиме.

Ответ прост: на силу влияет много других факторов, кроме объема мышц

Средний мужчина весит около 80 кг. Если человек - не тренированный, то тогда около 40% веса его тела составляют скелетные мышцы или около 32 кг. Несмотря на то, что рост мышечной массы очень сильно зависит от генетики, в среднем мужчина способен за 10 лет тренировок увеличить свою мышечную массу на 50%, то есть добавить к своим 32 кг мышц еще 16.

Скорее всего 7-8 кг мышц из этой прибавки добавится в первый год упорных тренировок, еще 2-3 кг - за следующие пару лет, а остальные 5-6 кг - за 7-8 лет упорных тренировок. Это типичная картина роста мышечной массы. С ростом мышечной массы примерно на 50% сила мышц возрастет в 2-4 раза.

Грубо говоря, если в первый день тренировок человек может поднять на бицепс вес в 10-15 кг, то впоследствии этот результат может вырасти до 20-30 кг.

С приседом: если в первые тренировки вы приседали с 50-килограммовой штангой, этот вес может вырасти до 200 кг. Это не научные данные, просто для примера - как могут расти силовые показатели. При подъеме на бицепс сила может вырасти примерно в 2 раза, а вес в приседаниях - в 4 раза. Но при этом объем мышц вырос только на 50%. То есть получается, что в сравнении с ростом массы, сила растет в 4-8 раз больше.

Безусловно мышечная масса имеет важное значение для силы, но, возможно, не определяющее. Давайте пройдемся по основным факторам, влияющим на силу и массу.

Мышечные волокна

Как показывают исследования: чем больше размер мышечного волокна, тем больше его сила.

На этом графике показана явная зависимость размеров мышечных волокон и их силы:

Как зависит сила (вертикальная шкала) от размера мышечных волокон (горизонтальная шкала). Исследование: From Gilliver, 2009 .

Однако если абсолютная сила стремится к росту при бОльшем объеме мышечных волокон, относительная сила (сила в соотношении с размером) — наоборот — падает .

Давайте разберемся почему так происходит.

Есть показатель для определения силы мышечных волокон относительно их объема — “specific tension” (переведем его как «удельная сила»). Для этого нужно максимальную силу разделить на площадь поперечного сечения:

Мышечные волокна: удельная сила волокон бодибилдеров на 62% ниже лифтеров

Так вот дело в том, что удельная сила очень сильно зависит от типа мышечных волокон .

В этом исследовании ученые выяснили, что удельная сила мышечных волокон профессиональных бодибилдеров на целых 62% ниже, чем у профессиональных лифтеров .

То есть, условно говоря, мышцы среднего пауэрлифтера сильнее на 62% мышц среднего бодибилдера при одинаковом объеме.

Более того, мышечные волокна бодибилдеров также слабее на 41%, чем у нетренированных людей из расчета на их площадь поперечного сечения. То есть из расчета на квадратный сантиметр толщины, мышцы бодибилдеров слабее, чем у тех, кто вообще не тренировался (но в целом, бодибилдеры, конечно, сильнее за счет общего объема мышц).

В этом исследовании сравнили разные мышечные волокна и выяснили, что самые сильные мышечные волокна в 3 раза сильнее самых слабых той же толщины — это очень большая разница.

Мышечные волокна быстрее растут в площади сечения, чем в силе

Так вот оба этих исследования показали, что с увеличением размера мышечных волокон их сила к толщине падает . То есть в размерах они растут больше, чем в силе .

Зависимость такая: при удвоении площади поперечного сечения мышцы ее сила вырастает только на 41%, а не в 2 раза .

В этом плане с силой мышечного волокна лучше коррелирует диаметр волокна, а не площадь сечения (внесите это исправление в школьные учебники по биологии!)

В конечном итоге все показатели ученые свели вот к такому графику:

По горизонтали: увеличение площади поперечного сечения мышцы. Синяя линия — рост диаметра, красная — общий рост силы, желтая — рост удельной силы (на сколько сила увеличивается при увеличении площади поперечного сечения).

Вывод, который можно сделать: с ростом объема мышц растет и сила, однако прирост размера мышцы (т.е. площади поперечного сечения) обгоняет прирост силы . Это усредненные показатели, собранные из целого ряда исследований и в некоторых исследованиях данные разнятся.

К примеру, в этом исследовании за 12 недель тренировок у подопытных площадь сечения мышц выросла в среднем на 30%, но при этом удельная сила не изменилась (то есть, читаем между строк, сила тоже увеличилась примерно на 30%).

Результаты этого исследования схожи: площадь поперечного сечения мышцы увеличилась у участников на 28-45% после 12 недель тренировок, но удельная сила не изменилась.

С другой стороны, эти 2 исследования (раз и два) показали увеличение удельной силы мышц при отсутствии роста самих мышц в объеме. То есть сила выросла, а объем — нет и благодаря этому сочетанию, получается, выросла удельная сила.

Во всех этих 4 исследованиях сила росла в сравнении с диаметром мышцы, но в сравнении с площадью поперечного сечения сила росла только в том случае, если мышечные волокна не росли.

Итак, давайте подытожим важную тему с мышечными волокнами:

  • Люди сильно отличаются по количеству мышечных волокон того или другого типа . Помните: удельная сила мышечных волокон у лифтеров (тренирующих силу) в среднем на 61% больше, чем у бодибилдеров (тренирующих объем). Грубо говоря, при одинаковых по объему мышцах лифтерские сильнее в среднем на 61%.
  • Самые слабые мышечные волокна в 3 раза слабее самых сильных . Их количество у каждого человека определяется генетически. Это означает, что гипотетически максимально возможная разница в силе мышц одного и того же объема — различается до 3 раз.
  • Удельная сила (сила на квадратный сантиметр поперечного сечения) не всегда растет с тренировками . Дело в том, что площадь поперечного сечения мышц растет в среднем быстрее, чем сила.

Место прикрепления мышц

Важный фактор силы — это то, как крепятся мышцы к костям и длина конечностей. Как вы помните из школьного курса физики — чем больше рычаг, тем легче поднимать вес.

Если прилагать усилие в точке А, то потребуется намного больше силы для подъема того же веса по сравнению с точкой B.

Соответственно, чем дальше мышца прикреплена (и чем короче конечность) — тем больше рычаг и тем бОльший вес можно поднять. Этим отчасти объясняется, почему некоторые довольно худые ребята способны поднимать намного больше некоторых особо объемных.

К примеру, в этом исследовании говорится, что разница в силе в зависимости от места прикрепления мышц в коленном суставе у разных людей составляет 16-25%. Тут уж как повезло с генетикой.

Причем, с ростом мышц в объеме момент силы увеличивается: это происходит потому, что с ростом мышцы в объеме «угол атаки» немного меняется и этим отчасти объясняется то, что сила растет быстрее объема.

В исследовании Andrew Vigotsky есть отличные картинки, наглядно демонстрирующие, как это происходит:

Самое главное — это заключение: последняя картинка, демонстрирующая, как с ростом толщины мышцы (площади поперечного сечения) — меняется угол приложения усилий, а значит и двигать рычаг более объемным мышцам становится легче.

Способность нервной системы активировать больше волокон

Еще один фактор силы мышц вне зависимости от объема — способность ЦНС (центральной нервной системы) активировать как можно большее количество мышечных волокон для сокращения (и расслаблять волокна — антагонисты).

Грубо говоря, способность максимально эффективно передавать мышечным волокнам правильный сигнал — на напряжение одних и расслабление других волокон. Вы наверняка слышали, что в обычной жизни мы способны передавать мышцам лишь определенное нормальное усилие, но в критический момент сила может вырастать многократно. В этом месте обычно приводятся примеры, как человек поднимает автомобиль, чтобы спасти жизнь близкого (и таких примеров действительно довольно много).

Впрочем, научные исследования пока не смогли доказать это в полной мере.

Ученые сравнивали силу «добровольного» сокращения мышц, а затем с помощью электростимуляции добивались еще большего — 100% напряжения всех мышечных волокон.

В результате оказалось, что «добровольные» сокращения составляют около 90-95% от максимально возможной сократительной силы , которой добивались с помощью электростимуляции (непонятно только какую погрешность и влияние такие «стимулирующие» условия оказали на мышцы-антагонисты, которые нужно расслаблять для получения большей силы — прим. Зожника ).

Ученые и автор текста делают выводы: вполне возможно, что некоторые люди смогут значительно увеличить силу, натренировав передачу сигналов мозга к мышцам, но большинство людей не способны значительно увеличить силу только за счет улучшения способности активировать больше волокон.

Нормализованная сила мышцы (НСМ)

Максимальная сократительная сила мышцы зависит от объемов мышцы, силы мышечных волокон, из которых она состоит, от «архитектуры» мышцы, грубо говоря, от всех факторов, что мы указали выше.

Объем мышцы согласно исследованиям отвечает примерно за 50% разницы в силовых показателях у разных людей.

Еще 10-20% разницы в силе объясняют «архитектурные» факторы, такие как место прикрепления, длина фасций.

Остальные факторы, отвечающие за оставшиеся 30-40% разницы в силе, вообще не зависят от размеров мышц .

Для того, чтобы рассмотреть эти факторы важно ввести понятие — нормализованная сила мышцы (НСМ) — это сила мышцы в сравнении с площадью ее сечения. Грубо говоря, насколько сильна мышца по сравнению со своим размером .

Большинство исследований (но не все) показывают, что НСМ растет по мере тренировок. Но при этом, как мы рассмотрели выше (в разделе про удельную силу), сам по себе рост объема не дает такой возможности, это значит, что рост силы обеспечивается не только ростом объема, улучшением прохождения мышечных сигналов, а другими факторами (теми самыми, что отвечают за те оставшиеся 30-40% разницы в силе).

Что это за факторы?

Улучшение качества соединительных тканей

Один из этих факторов — с ростом тренированности улучшается качество соединительной ткани, передающей усилия от мышц к костям . С ростом качества соединительной ткани скелету передается бОльшая часть усилий, а значит растет сила при том же объеме (то есть растет нормализованная сила).

Согласно исследованию до 80% силы мышечного волокна передается окружающим тканям, которые прикрепляют мышечные волокна к фасциям с помощью ряда важных белков (endomysium, perimysium, epimysium и другие). Эта сила передается сухожилиям, увеличивая общую передаваемую силу от мышц к скелету.

В этом исследовании , к примеру, показано, что ДО тренировок НСМ (сила всей мышцы на площадь поперечного сечения) была на 23% выше, чем удельная сила мышечных волокон (сила мышечных волокон на площадь поперечного сечения этих волокон).

А ПОСЛЕ тренировок НСМ (удельная сила всей мышцы) была на 36% выше (удельной силы мышечных волокон). Это означает, что сила всей мышцы при тренировках растет лучше, чем сила суммы всех мышечных волокон .

Ученые связывают это с ростом соединительных тканей, позволяющих эффективнее передавать силу от волокон к костям.

Сверху и снизу схематично показаны сухожилия — между ними — мышечное волокно. С ростом тренированности (правый рисунок) растет и соединительная ткань вокруг мышечных волокон, количество и качество соединений, позволяя эффективнее передавать усилие мышечного волокна к сухожилиям.

Идея о том, что с ростом тренированности улучшается качество волокон передающих усилие (и рисунок выше) взяты из исследования 1989 года и пока это по большей части теория.

Впрочем, есть исследование 2010 года , поддерживающее эту позицию. В ходе этого исследования при не изменившихся показателях мышечных волокон (удельная сила, пиковая сила) общая сила всей мышцы в среднем выросла на 17% (но с большим разбросом у разных людей: от 6% до 28%).

Антропометрия как фактор силы

В дополнение ко всем перечисленным факторам силы мышц, общая антропометрия тела также влияет на количество выдаваемой силы и насколько эффективно эта сила может передаваться при сгибании суставов (причем, независимо от момента силы отдельных суставов).

Возьмем для примера приседание со штангой. Гипотетическая ситуация: 2 одинаково тренированных человека с мышцами одинакового размера и состава волокон, идентично прикрепленные к костям. Если при этом у человека А бедро длиннее на 20%, чем у человека B, то человек B должен гипотетически приседать с весом на 20% больше .

Однако в реальности все происходит не совсем так, в связи с тем, что при изменении длины костей пропорционально меняется и место прикрепления мышц.

Таким образом, если у человека А бедро длиннее на 20%, то и место прикрепления мышц к кости бедра (величина рычага) также пропорционально — на 20% дальше — а значит, длина бедра нивелируется выигрышем в прикреплении мышцы дальше от сустава. Но это в среднем . В реальности антропометрические данные, конечно, разнятся от человека к человеку.

Например, есть наблюдение , что пауэлифтеры с более длинной голенью и коротким бедром склонны приседать с бОльшим весом, чем те, у кого бедро длиннее относительно голени . Аналогичное наблюдение и по поводу длины плеча и жима штанги от груди.

Независимо от всех остальных факторов антропометрия тела вносит коррективу в силу, однако измерение этого фактора представляет сложность, так как сложно отделить его от других.

Специфичность тренировок

Вы прекрасно знаете о специфичности тренировок: что тренируешь — то и улучшается. Наука говорит, что специфичность работает в отношении самых разных аспектов тренировок. Значительная часть этого эффекта работает благодаря тому, что нервная система учится эффективнее совершать определенные движения.

Вот простой пример. Это исследование часто используют в качестве примера, иллюстрирующего принцип специфичности:

  • 1 группа тренировалась с весом 30% от 1ПМ — по 3 повторения до мышечного отказа.
  • 2 группа тренировалась с весом 80% от 1ПМ — и делала только 1 повторение до мышечного отказа.
  • 3 группа тренировалась с весом 80% от 1ПМ — по 3 повторения до мышечного отказа.

Наибольшего улучшения в силе ожидаемо добилась группа 3 — тренировки с тяжелым весом и 3 подхода в упражнении.

Однако когда в конце исследований среди всех групп проверяли максимальное количество повторений с весом 30% от 1ПМ, то наилучший результат показала группа, которая и тренировалась с 30% от 1ПМ. Соответственно, при проверке максимального веса на 1ПМ результаты лучше выросли у тех, кто тренировался с 80% от 1ПМ.

Еще одна любопытная деталь в этом исследовании: когда стали проверять как изменились результаты в статической силе (ее не тренировали ни в одной из 3 групп) — то результаты в росте этого показателя были одинаковы, так как все 3 группы не тренировали специфично этот силовой показатель.

С ростом опыта и оттачиванием техники связан рост силы. Причем, в комплексных многосуставных упражнениях, где задействованы крупные мышечные группы эффект от тренировок больше, чем в небольших мышцах.

На этом графике видно как с ростом количества повторений (горизонтальная шкала) уменьшается доля ошибок в упражнении.

Сила мышцы. Единицы измерения. В системе СИ сила выражается в ньютонах (Н). В физиологической практике силу мышцы, как правило, определяют по максимальной массе груза, который может быть поднят при ее сокращении. В условиях целостного организма определяют «становую», «кистевую » силу, силу сгибателей и т.п.

Факторы, определяющие силу мышцы. Анатомическое строение: перистые мышцы (волокна расположены косо, под углом к продольной оси) способны развивать гораздо большее напряжение, чем мышцы с параллельным расположением волокон. В связи с этим принято определять так называемое физиологическое поперечное сечение мышцы, т.е. сумму поперечных сечений всех волокон, из которых состоит мышца. У перистых мышц физиологическое поперечное сечение значительно превосходит анатомическое (геометрическое). К числу наиболее сильных относятся жевательные мышцы.

Выделяют понятие «удельная сила мышцы» - отношение общей силы мышцы в ньютонах к физиологическому поперечному сечению мышцы (Н/см 2). Удельная сила находится в пределах 50- 150Н/см 2 . Удельную силу мышцы выражают также и в килограммах на квадратный сантиметр (кг/см 2). Так, для трехглавой мышцы она составляет 17 кг/см 2 , для сгибателя плеча - 8кг/см 2 , для икроножной мышцы - 1кг/см 2 , для гладкой мышцы - 1кг/см 2 . В разных мышцах тела соотношение между числом медленных и быстрых мышечных волокон неодинаково и очень сильно отличается у разных людей, а также в разные периоды жизни. Одиночное мышечное волокно способно развивать напряжение до 0,2 Н.

Исходная длина мышцы тоже влияет на силу ее сокращения. При умеренном предварительном растяжении мышцы сила ее сокращения увеличивается, а при сильном растяжении она уменьшается, вплоть до отсутствия сокращения из-за отсутствия зон зацепления между нитями актина и миозина. При оптимальной длине (в состоянии покоя), при которой все головки миозиновых нитей способны контактировать с актиновыми филаментами, сила мышечного сокращения вырастает максимально. Предварительное растяжение мышцы увеличивает ее эластическую тягу, что также ведет к увеличению последующего ее сокращения. Это осуществляется за счет белка титина, нити которого одним концом прикреплены к Z-пластинке, другим - к миозину и растягиваются подобно пружине.

При сильном укорочении мышцы уменьшается (по непонятным причинам) сродство тропонина к Са 2+ , что ограничивает максимальную силу сокращений.

Число возбужденных волокон также влияет на силу одиночного сокращения мышцы. Оно определяется силой раздражения в эксперименте или числом возбужденных мотонейронов в натуральных условиях.

Сила тетанического сокращения мышцы зависит от степени выраженности суммации сокращений в каждом мышечном волокне, что определяется частотой импульсации - она возрастает до оптимума.

Работа мышцы (А). В механике работа определяется как произведение силы (F), приложенной к телу, на расстояние (L) его перемещения под воздействием данной силы:

А = F×L (Дж).

Утомление мышцы. При мышечной работе у человека со временем развивается утомление - сила мышечных сокращений постепенно уменьшается, и в конечном итоге наступает момент, когда человек уже не в состоянии продолжать работу. Скорость развития утомления зависит от ритма работы и величины груза. Большой груз или слишком частый ритм работы приводят к быстрому развитию утомления, в результате чего выполненная работа бывает ничтожна. Наибольшей бывает работа при некотором среднем, оптимальном для данного человека, ритме работы и среднем, оптимальном грузе (правило средних нагрузок). При любой силе изометрического сокращения мышцы работа равна нулю, несмотря на расход энергии и развивающееся утомление. Причиной утомления является накопление К + в Т-трубочках (при частых сокращениях), накопление молочной кислоты, расход энергетического материала.

Мощность мышцы (работа, совершаемая в единицу времени) в системе СИ выражается в ваттах (Дж/с 2). Максимальная мощность соответствует выполнению наибольшего объема работы в течение минимального отрезка времени. Однако в этом случае быстро развивается утомление.

1.3.5. Структурно­функциональные особенности гладких мышц

Расположение актина и миозина в гладких мышцах не столь упорядочено, Z-мeмбраны и саркомеры в них отсутствуют, поэтому при микроскопическом исследовании не выявляется характерная для скелетной мышцы поперечная исчерченность, что и определяет название этих мышц - гладкие. Форма гладкомышечных клеток веретенообразная, диаметр волокна в утолщенной части составляет 2-10 мкм, длина 50-400 мкм. В клетке имеется одно ядро, митохондрий относительно мало. СПР представлен плоскими везикулами, расположенными в непосредственной близости от внутренней поверхности клеточной мембраны. Он содержит мало ионов Са 2+ .

Нервно-мышечные синапсы отличаются от таковых у исчерченных мышц, причем наиболее ярко отличие выражено у симпатической нервной системы. Постганглионарные волокна (аксона ганглионарных симпатических нейронов) по своему ходу среди миоцитов образуют многочисленные утолщения (расширения), из которых выделяется медиатор. Последний диффундирует в межклеточном пространстве и взаимодействует с постсинаптическими рецепторами, которые располагаются равномерно по всей мембране гладкомышечных клеток, что ведет к стимуляции или угнетению функций органа (например, торможение моторики кишки, усиление работы сердца, сужение кровеносного сосуда). В гладких мышцах бронхов и крупных артерий нервное влияние передается без генерации ПД, сокращение этих мышц обеспечивают ВПСП.

Особенности свойств гладких мышц. Возбудимост ь. Потенциал покоя большинства гладкомышечных клеток составляет -60-70 мВ, у миоцитов, обладающих спонтанной активностью, - -30-60 мВ. Потенциал действия более продолжителен (10-50 мс), чем у скелетных мышц - до10мс. У некоторых миоцитов после начальной быстрой реполяризации формируется плато, которое удлиняет ПД до 500мс; оно связано с поступлением в клетку Na + и Са 2+ . Деполяризация мембраны обусловлена в основном диффузией Са 2+ в клетку.

Проводимость . Структурно­функциональной единицей гладких мышц является пучок мышечных волoкон. Взаимодействие между отдельными миоцитами осуществляется благодаря щелевым контактам, обладающим низким электрическим сопротивлением, и близко расположенным контактирующим элементам соседних мышечных волокон. Благодаря этому электрическое поле одной клетки в пучке обеспечивает возбуждение другой. Поэтому изолированно отдельные гладкомышечные клетки пучка не возбуждаются. Скорость распространения ПД в пределах пучка составляет 5-10см/с. Причем для возбуждения всех миоцитов пучка не достаточно возбуждения одного миоцита (необходимо первоначальное возбуждение нескольких клеток).

Сократимость . Сокращения гладкой мышцы определяются описанным выше характером распространения возбуждения - пучок гладкомышечных волокон сокращается как единое целое (пучок - функциональная единица гладкой мышцы). Активность гладкомышечной АТФазы миозина в 40-80 раз ниже активности АТФазы миозина исчерченной мышцы. Чем больше АТФазная активность миозина, тем быстрее сокращается мышечное волокно. Поэтому гладкая мышца сокращается гораздо медленнее, чем скелетная. По этой же причине на сокращение гладкой мышцы меньше расходуется АТФ (экономичность). Кроме того, гладкая мышца не утомляется во время продолжительной активности - она приспособлена к длительному поддержанию тонуса.

Главной особенностью электромеханического сопряжения в гладкой мышце является то, что основную роль в сопряжении играет входящий в клетку (при ее возбуждении) Са 2+ , поскольку его запасы в СПР гладкомышечных миоцитов незначительны. Другая важная особенность заключается в том, что регуляторным белком гладкой мышцы является кальмодулин (наличие тропонина не установлено), который связывается с Са 2+ . Комплекс Са 2+ - кальмодулин активирует особый фермент (киназу легких цепей миозина), который переносит фосфатнуюгруппу с АТФ на головку поперечного мостика миозина. Фосфорилированная головка миозина взаимодействует с актином. Это ведет к конформационным изменениям миозиновых мостиков, что обеспечивает скольжение нитей актина относительно нитей миозина.

Сокращение гладких мышц может быть результатом и химиомеханического сопряжения (без формирования ПД), вследствие взаимодействия медиатора с мембранными рецепторами и активации различных ферментных систем, вызывающих взаимодействие актина и миозина, что и обеспечивает сокращение мышцы.

Расслабление гладкомышечных миоцитов обусловлено инактивацией кальциевых каналов вследствие восстановления исходных значений МП. Активация кальциевого насоса в мембране миоцита и СПР обеспечивает выведение Са 2+ в СПР и из гиалоплазмы клетки и снижение его концентрации, в результате чего инактивируется киназа легких цепей миозина, что приводит к прекращению фосфорилирования миозиновых головок, а следовательно, они утрачивают способность взаимодействовать с актином.

Автоматия присуща клеткам - водителям ритма (пейсмекерам). В ее основе лежит спонтанно возникающая медленная деполяризация (препотенциал) - при достижении КП возникает ПД. Спонтанная деполяризация преимущественно обусловлена диффузией Са 2+ в клетку. Частота генерируемых ПД зависит от скорости медленной деполяризации и соотношения МП и КП: чем меньше МП, тем ближе он к КП, и при этом легче возникают ПД. Автоматия практически не выражена у гладких мышц артерий, семенных протоков, радужки, ресничных мышц. Их функции полностью определяются ВНС.

Пластичность выражается в том, что при растяжении гладких мышц их напряжение первоначально увеличивается, а затем снижается до исходного уровня. Таким образом, свойство пластичности проявляется в том, что гладкая мышца может не изменять напряжения как в укороченном, так и в растянутом состоянии. Эта особенность гладкой мышцы предотвращает избыточный рост давления в полых внутренних органах при их наполнении (мочевой пузырь, желудок и др.).

Однако растяжение гладкой мышцы может вызывать активацию процессов сокращения. Этот феномен, в частности, характерен для артериол, что является одним из важных механизмов регуляции их тонуса и регионарного кровотока в некоторых органах (мозг, почки, сердце). Стимуляция сокращения в этом случае происходит в результате того, что при растяжении пейсмекерных клеток активируются механоуправляемые каналы, в результате чего возникает ПД, который посредством своего электрического поля и щелевых контактов обеспечивает возникновение ПД в соседних клетках. Чрезмерное растяжение мочевого пузыря также вызывает его сокращение и эвакуацию мочи. Подобная реакция наблюдается при денервации органа и фармакологической блокаде внутриорганной системы.

Энергетическое обеспечение сокращения гладких мышц также осуществляется за счет молекул АТФ, ресинтез которой происходит, в основном, посредством анаэробного гликолиза.

Вопросы для самоконтроля

1. Назовите основные структурные элементы мышечного волокна, обеспечивающие его возбуждение и сокращение.

2. Каково функциональное значение мембраны мышечного волокна в выполнении его сократительной функции?

3. Что представляет собой миофибрилла, каково ее значение в механизме мышечного сокращения?

4. Перечислите свойства мышечной ткани.

5. Перечислите основные функции скелетных мышц.

6. Что называют сократимостью мышцы?

7. Почему потенциал действия считается инициатором мышечного сокращения? Дайте соответствующие пояснения.

7. Нарисуйте потенциал действия скелетной мышцы, полученный при внутриклеточном отведении. Укажите его амплитуду в мВ.

8. Нарисуйте, сопоставив во времени, потенциал действия и цикл одиночного сокращения скелетной мышцы. Назовите фазы сокращения мышцы.

9. Опишите кратко роль ионов кальция в механизме мышечного сокращения.

10. На какие процессы, обеспечивающие сокращение мышцы, расходуется энергия АТФ?

11. Что является непосредственной причиной скольжения нитей актина и миозина, обеспечивающего мышечное сокращение? Почему?

12. Активным (с затратой энергии АТФ) или пассивным (без затраты энергии АТФ) является процесс расслабления мышцы?

13. Назовите источники энергии, обеспечивающие ресинтез АТФ.

14. Назовите типы сокращения скелетных мышц в зависимости от условий сокращения и от характера раздражения.

15. Назовите три фазы одиночного мышечного сокращения. Какой основной процесс происходит в первую фазу?

16. Какие факторы влияют на силу одиночного мышечного сокращения?

17. Почему увеличение силы раздражения мышцы увеличивает силу ее сокращения?

18. Почему предварительное умеренное растяжение изолированной мышцы увеличивает силу ее сокращения при одиночном раздражении?

19. Что называют тетаническим сокращением мышцы? Какое явление лежит в основе механизма тетануса?

20. Что называют суммацией мышечных сокращений?

21. При каких условиях раздражения скелетной мышцы вместо одиночных сокращений возникает тетанус? Какие виды тетануса Вам известны?

22. В какую фазу одиночного сокращения должно попасть каждое последующее раздражение, чтобы возник зубчатый или гладкий тетанус? Какие факторы влияют на высоту гладкого тетануса изолированной мышцы?

23. Какова зависимость высоты гладкого тетануса от частоты раздражения мышцы (в динамике)?

24. Какую частоту раздражения мышцы называют оптимальной, какую – пессимальной?

25. Подчиняется ли двигательная единица закону "все или ничего"? Почему?

26. В каких отделах центральной нервной системы находятся мотонейроны, аксоны которых иннервируют скелетные мышцы?

27. Что называют тонусом скелетных мышц, развивается ли при этом их утомление, велик ли расход энергии?

28. Какова зависимость работы изолированной скелетной мышцы от величины нагрузки?

29. Перечислите структурные особенности гладкой мышцы.

30. Перечислите особенности потенциала покоя и потенциала действия гладкой мышцы по сравнению с таковыми поперечнополосатой мышцы.

31. Назовите функциональные особенности гладкой мышцы по сравнению со скелетной.

32. Что такое пластичность гладких мышц, каково ее значение для функционирования внутренних полых органов?

34. Что является функциональной единицей гладкой мышцы? Почему?

35. Перечислите основные свойства сердечной мышцы.

36. Каковы особенности пейсмекерных клеток водителей ритма сердца?



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!