Упражнения. Питание. Диеты. Тренировки. Спорт

Атф энергия мышц. Анатомия и физиология Анаэробная алактатная система

Содержание

Аденозинтрифосфорная кислота (молекула АТФ в биологии) является веществом, вырабатываемым организмом. Это источник энергии для каждой клетки тела. Если АТФ вырабатывается недостаточно, то наступают сбои в работе сердечно-сосудистой и других систем и органов. В этом случае медики назначают препарат, содержащий аденозинтрифосфорную кислоту, которая выпускается в таблетках и ампулах.

Что такое АТФ

Аденозинтрифосфат, Аденозинтрифосфорная кислота или АТФ - это нуклеозидтрифосфат, который является универсальным источником энергии для всех живых клеток. Молекула обеспечивает связь между тканями, органами и системами организма. Являясь носителем высокоэнергетических связей, Аденозинтрифосфат осуществляет синтез сложных веществ: перенос через биологические мембраны молекул, мышечное сокращение и прочие. Строение АТФ – это рибоза (пятиуглеродный сахар), аденин (азотистое основание) и три остатка фосфорной кислоты.

Помимо энергетической функции АТФ, молекула нужна в организме для:

  • расслабления и сокращения сердечной мышцы;
  • нормальной работы межклеточных каналов (синапсов);
  • возбуждения рецепторов для нормального проведения по нервным волокнам импульса;
  • передачи возбуждения от блуждающего нерва;
  • хорошего кровоснабжения головного, сердца;
  • повышения выносливости организма при активной мышечной нагрузке.

Препарат АТФ

Как расшифровывается АТФ, понятно, но что происходит в организме при снижении ее концентрации, ясно не всем. Через молекулы аденозинтрифосфорной кислоты под влиянием негативных факторов в клетках реализуются биохимические изменения. По этой причине люди с дефицитом АТФ страдают сердечно-сосудистыми заболеваниями, у них развивается дистрофия мышечных тканей. Чтобы обеспечить организму необходимый запас аденозинтрифосфата, назначаются медикаменты с его содержанием.

Лекарство АТФ – это препарат, который назначают для лучшего питания клеток тканей и кровоснабжения органов. Благодаря ему в организме пациента происходит восстановление работы сердечной мышцы, снижаются риски развития ишемии, аритмии. Прием АТФ улучшает процессы кровообращения, снижает опасность возникновения инфаркта миокарда. Благодаря улучшению данных показателей, в норму приводится общее физическое здоровье, у человека повышается работоспособность.

Инструкция по применению АТФ

Фармакологические свойства АТФ – препарата схожи с фармакодинамикой самой молекулы. Лекарственное средство стимулирует энергетический обмен, нормализует уровень насыщения ионами калия и магния, понижает содержание мочевой кислоты, активизирует ионотранспортные системы клеток, развивает антиоксидантную функцию миокарда. Пациентам с тахикардией и фибрилляцией предсердий применение лекарства помогает восстановить естественный синусовый ритм, уменьшить интенсивность эктопических очагов.

При ишемии и гипоксии медикамент создает мембраностабилизирующую и антиаритмическую активность, благодаря свойству налаживать метаболизм в миокарде. Препарат АТФ благотворно влияет на центральную и периферическую гемодинамику, коронарное кровообращение, увеличивает способность сокращения сердечной мышцы, улучшает функциональность левого желудочка и сердечный выброс. Весь это спектр действий приводит к понижению количества приступов стенокардии и одышки.

Состав

Действующее вещество препарата – натриевая соль аденозинтрифосфорной кислоты. Лекарство АТФ в ампулах содержит в 1 мл 20 мг активного компонента, а в таблетках – 10 или 20 г на штуку. Вспомогательные вещества в растворе для инъекций – это лимонная кислота и вода. Таблетки содержат дополнительно:

  • безводный коллоидный диоксид кремния;
  • бензоат натрия (Е211);
  • крахмал кукурузный;
  • стеарат кальция;
  • моногидрат лактозы;
  • сахарозу.

Форма выпуска

Как уже упоминалось, выпускается медикамент в таблетках и ампулах. Первые упаковываются в блистер по 10 штук, продаются по 10 или 20 мг. Каждая коробка содержит 40 таблеток (4 блистерные упаковки). Каждая ампула 1 мл содержит 1% раствор для инъекций. В картонной коробке имеется 10 штук и инструкция по применению. Аденозинтрифосфорная кислота таблетизированной формы бывает двух видов:

  • АТФ-Лонг – препарат с более длительным действием, который выпускается в таблетках белого цвета по 20 и 40 мг с насечкой для деления с одной стороны и фаской – с другой;
  • Форте – лекарство АТФ для сердца в таблетках для рассасывания по 15 и 30 мг, которое показывает более выраженное действие на сердечную мышцу.

Показания к применению

Таблетки или уколы АТФ чаще назначают при различных заболеваниях сердечно-сосудистой системы. Поскольку спектр действия препарата широк, лекарственное средство показано при следующих состояниях:

  • вегето-сосудистая дистония;
  • стенокардия покоя и напряжения;
  • нестабильная стенокардия;
  • наджелудочковая пароксизмальная тахикардия;
  • суправентрикулярная тахикардия;
  • ишемическая болезнь сердца;
  • постинфарктный и миокардический кардиосклероз;
  • сердечная недостаточность;
  • нарушения сердечного ритма;
  • аллергический или инфекционный миокардит;
  • синдром хронической усталости;
  • миокардиодистрофия;
  • коронарный синдром;
  • гиперурикемия разного генеза.

Дозировка

АТФ-Лонг рекомендуется класть под язык (сублингвально) до полного рассасывания. Лечение осуществляется независимо от еды 3-4 раза/сутки в дозировке 10-40 мг. Терапевтический курс назначает врач индивидуально. Средняя продолжительность лечения – 20-30 дней. Более длительный прием доктор назначает по собственному усмотрению. Разрешается повторить курс через 2 недели. Не рекомендуется превышать суточную дозу выше 160 мг препарата.

Инъекции АТФ внутримышечно вводятся 1-2 раза/сутки по 1-2 мл из расчета 0,2-0,5 мг/кг веса пациента. Внутривенное введение препарата осуществляется медленно (в виде инфузий). Дозировка составляет 1-5 мл из расчета 0,05-0,1 мг/кг/мин. Проводятся инфузии исключительно в условиях стационара под тщательным контролем показателей артериального давления. Продолжительность инъекционной терапии составляет около 10-14 дней.

Противопоказания

Препарат АТФ назначают с осторожностью при комплексной терапии с другими лекарственными средствами, которые содержат магний и калий, а также с медикаментами, предназначенными для стимуляции сердечной деятельности. Абсолютные противопоказания к применению:

  • грудное вскармливание (лактация);
  • беременность;
  • гиперкалиемия;
  • гипермагниемия;
  • кардиогенный или другие виды шока;
  • острый период инфаркта миокарда;
  • обструктивные патологии легких и бронхов;
  • синоатриальная блокада и AV-блокада 2-3 степени;
  • геморрагический инсульт;
  • тяжелая форма бронхиальной астмы;
  • детский возраст;
  • гиперчувствительность к компонентам, входящим в состав лекарства.

Побочные действия

При некорректном применении лекарственного средства может возникнуть передозировка, при которой наблюдаются: артериальная гипотензия, брадикардия, AV-блокада, потеря сознания. При таких признаках необходимо прекратить прием препарата и обратиться к врачу, который назначит симптоматическое лечение. Побочные реакции возникают и при длительном использовании медикамента. Среди них:

  • тошнота;
  • кожный зуд;
  • дискомфорт в эпигастральной области и груди;
  • высыпания на коже;
  • гиперемия лица;
  • бронхоспазм;
  • тахикардия;
  • усиление диуреза;
  • головные боли;
  • головокружение;
  • ощущение жара;
  • усиление моторики желудочно-кишечного тракта;
  • гиперкалиемия;
  • гипермагниемия;
  • отек Квинке.

Вы для себя уяснили из предыдущей статьи, т.к. это очень важно. Теперь поговорим о том, как поддерживается движение миозинового мостика, откуда берется энергия для сократительных процессов в мышце.

Для всего нашего организма АТФ служит одним из основных источников энергии и мышечное волокно – не исключение. Напомню: – внутриклеточный источник энергии, поддерживающий все процессы, происходящие в клетке.

Как раз распад молекулы АТФ и протекает с выделением энергии , также в ходе распада выделяется ортофосфорная кислота, а АТФ превращается в аденезиндифосфат (АДФ).

При взаимодействии с нитью актина, головки миозиновых мостиков расщепляют молекулу АТФ, получая тем самым энергию для сокращения.

Однако следует понимать, что содержание «запасных» молекул АТФ в нашем организме невелико, поэтому для длительной работы мышц и, тем более, для интенсивных тренировок, нашему организму необходима энергетическая подпитка.

Восполнение энергетических ресурсов в мышце осуществляется тремя основными путями:

  1. Расщепление креатинфосфата. В ходе такой реакции, молекула креатинфосфата отдает свою фосфатную группу молекуле аденезиндифосфата (АДФ), в следствие чего АДФ снова превращается в АТФ, а креатинфосфат – в креатин.
    Однако такая энергетическая подпитка длится весьма ограниченное время, поддерживая энергетический баланс мышц лишь в самом начале их работы. Связано это с малым запасом креатинфосфата в мышечных клетках. Далее в работу включаются гликолиз и окисление в митохондриях.
  2. Гликолиз. В ходе данного химического процесса в мышце образуется две молекулы молочной кислоты – в результате распада молекулы глюкозы. Распад глюкозы происходит в при участии десяти специальных ферментов.
    Распад одной молекулы глюкозы способен пополнить энергетические запасы двух молекул АТФ. Гликолиз весьма быстро восполняет мышечные запасы АТФ, т.к. происходит без участия кислорода (анаэробный процесс).
    В мышечной ткани основной субстрат гликолиза – гликоген. Гликоген – сложный углевод, состоящий из разветвленных цепей единиц. Основная масса углеводов в нашем организме накапливается в виде гликогена, сосредоточенного в скелетной мускулатуре и печени. Запасы гликогена во многом определяют объемы нашей мускулатуры и энергетический потенциал мышц.
  3. Окисление органических веществ. Данный процесс происходит в при участии кислорода (аэробный процесс), также для его протекания необходимо присутствие специальных ферментов. Доставка кислорода занимает определенное время, поэтому данный процесс запускается после расщепления креатинфосфата и гликолиза.
    Окисление органических веществ осуществляется поэтапно: запускается процесс гликолиза, но еще несформировавшиеся молекулы молочной кислоты (молекулы пирувата) направляются в митохондрии для дальнейших окислительных процессов, в результате которых образуется энергия с выделением воды (Н2О) и углекислого газа (СО2). При помощи образовавшейся энергии формируется 38 молекул АТФ.
    Если в результате анаэробного распада глюкозы (гликолиза) восстанавливается 2 молекулы АТФ, то аэробный процесс (окисление в митохондриях) способен восстановить в 19 раз больше молекул АТФ.

Вывод: молекула АТФ – основной и универсальный энергетический источник для мышечной активности, но запасы АТФ в мышечном волокне малы, поэтому постоянно пополняются расщеплением креатинфосфата, гликолизом и окислением органических веществ в митохондриях.

Причем гликолиз и окисление – основные пути восстановления АТФ, и каждому из этих способов соответствует свой тип мышечного волокна. Об этом мы поговорим в статье .

Материалы данной статьи охраняются законом о защите авторских прав. Копирование без указания ссылки на первоисточник и уведомления автора ЗАПРЕЩЕНО!

Движение любого сочленения осуществляется благодаря сокращениям скелетных мышц. На следующей диаграмме представлен метаболизм энергии в мышце.

Сократительная функция всех типов мышц обусловлена превращением в мышечных волокнах химической энергии определённых биохимических процессов в механическую работу. Гидролиз аденозинтрифосфата (АТФ) как раз иобеспечивает мышцу этой энергией.

Поскольку снабжение мускулатуры АТФ невелико, необходимо активировать метаболические пути к ресинтезу АТФ , чтобы уровень синтеза соответствовал затратам на сокращение мышц. Образование энергии для обеспечения мышечной работы может осуществляться анаэробным (без использования кислорода) и аэробным путем. АТФ синтезируется из аденозиндифосфата (АДФ ) посредством энергии креатинфосфата, анаэробного гликолиза или окислительного метаболизма. Запасы АТФ в мышцах сравнительно ничтожны и их может хватить лишь на 2-3 секунды интенсивной работы.

Креатинфосфат

Запасы креатинфосфата (КрФ ) в мышце побольше запасов АТФ и они анаэробномогут быть быстро превращены в АТФ . КрФ – самая «быстрая» энергии в мышцах (она обеспечивает энергию в первые 5-10 секунд очень мощной, взрывной работы силового характера, например, при подъеме штанги). После исчерпания запасов КрФ организм переходит к расщеплению мышечного гликогена, обеспечивающего более продолжительную (до 2-3 минут), но менее интенсивную (в три раза) работу.

Гликолиз

Гликолиз - форма анаэробного метаболизма, обеспечивающая ресинтез АТФ и КрФ за счет реакций анаэробного расщепления гликогена или глюкозы до молочной кислоты.

КрФ считаетсятопливом быстрой реализации, которыйрегенерирует АТФ , которогов мышцах незначительное количество и поэтомуКрФ является основным энергетиком в течение нескольких секунд. Гликолиз более сложная система, способная функционироватьдлительное время, поэтому ее значение существенно для более длительных активных действий. КрФ ограничен своим незначительным количеством. Гликолиз же имеет возможность для относительно длительного энергетического обеспечения, но, производя молочную кислоту,заполняет ею двигательные клетки ииз-заэтого ограничивает мышечную активность.

Окислительный метаболизм

Связан с возможностью выполнения работы за счет окисления энергетических субстратов, в качестве которых могут использоваться углеводы, жиры, белки при одновременном увеличении доставки и утилизации кислорода в работающих мышцах.

Для пополнения срочных и кратковременных энергетических запасов и выполнения длительной работы мышечная клетка использует так называемые долговременные источники энергии. К ним относятся глюкоза и другие моносахара, аминокислоты, жирные кислоты, глицеролкомпоненты продуктов питания, доставляемые в мышечную клетку через капиллярную сеть и участвующие в окислительном метаболизме. Эти источники энергии генерируют образование АТФ путем сочетания утилизации кислорода с окислением носителей водорода в электронтранспортной системе митохондрии.

В процесс полного окисления одной молекулы глюкозы синтезируется 38 молекул АТФ . При сопоставлении анаэробного гликолиза с аэробным расщеплением углеводов можно заметить, что аэробный процесс в 19 раз эффективнее.

Во время выполнения кратковременных интенсивных физических нагрузок в качестве основных источников энергии используются КрФ , гликоген и глюкоза скелетных мышц. В этих условиях главным фактором, лимитирующим образование АТФ , можно считать отсутствие необходимого количества кислорода. Интенсивный гликолиз приводит к накоплению в скелетных мышцах больших количеств молочной кислоты, которая постепенно диффундирует в кровь и переносится в печень. Высокие концентрации молочной кислоты становятся важным фактором регуляторного механизма, ингибирующего обмен свободных жирных кислот во время физических нагрузок длительностью 30-40 с.

По мере увеличения длительности физических нагрузок происходит постепенное снижение концентрации инсулина в крови. Этот гормон активно участвует в регуляции жирового обмена и при высоких концентрациях тормозит активность липаз. Снижение концентрации инсулина во время длительных физических нагрузок приводит к повышению активности инсулин зависимых ферментных систем, что проявляется в усилении процесса липолиза и увеличении освобождения жирных кислот из депо.

Важность этого регуляторного механизма становится очевидной, когда спортсмены допускают наиболее распространенную ошибку. Нередко, стараясь обеспечить организм легкоусвояемыми источниками энергии, за час до начала соревнований или тренировок они принимают богатую углеводами пищу или концентрированный, содержащий глюкозу, напиток. Такое насыщение организма легкоусвояемыми углеводами приводит через 15-20 минут к повышению уровня глюкозы в крови, а это, в свою очередь, вызывает усиленное выделение инсулина клетками поджелудочной железы. Повышение концентрации этого гормона в крови приводит к усилению потребления глюкозы в качестве источника энергии для мышечной деятельности. В конечном счете, вместо энергетически более выгодных жирных кислот в организме расходуются углеводы. Так, прием глюкозы за час до старта может существенно повлиять на спортивную работоспособность и снизить выносливость к длительной нагрузке.

Активное участие свободных жирных кислот в энергетическом обеспечении мышечной деятельности позволяет более экономно выполнять длительные физические на грузки. Усиление процесса липолиза во время физических нагрузок приводит к освобождению жирных кислот из жировых депо в кровь, и они могут быть доставлены в скелетные мышцы или использованы для образования липопротеинов крови. В скелетных мышцах свободные жирные кислоты проникают в митохондрии, где подвергаются последовательному окислению, сопряженному с фосфорилированием и синтезом АТФ .

Каждый из перечисленных биоэнергетических компонентов физической работоспособности характеризуется критериями мощности, емкости и эффективности (табл. 1).

Таблица 1. Основные биоэнергетические характеристики метаболических процессов - источников энергии при мышечной деятельности

Критерии мощности

Максимальная энергетическая емкость, кДж/кГ

Метаболический процесс

Максимальная мощность, кДж/кГмин

Время достижения макс. мощи. физической работы, с

Время удержания работоспособности на уровне макс. мощн., с

Алактатный анаэробный

3770

Гликолитический -анаэробный

2500

15-20

90-250

1050

Аэробный

1250

90-180

340-600

Не ограничена

Критерий мощности оценивает то максимальное количество энергии в единицу времени, которое может быть обеспечено каждой из метаболических систем.

Критерий емкости оценивает доступные для использования общие запасы энергетических веществ в организме, или общее количество выполненной работы за счет данного компонента.

Критерий эффективности показывает, какое количество внешней (механической) работы может быть выполнено на каждую единицу затрачиваемой энергии.

Важное значение имеет соотношение аэробной и анаэробной энергопродукции при выполнении работы разной интенсивности. На примере беговых дистанций из легкой атлетики можно представить это соотношение (табл.2)

Таблица 2. Относительный вклад механизмов аэробной и анаэробной энергопродукции при выполнении с максимальной интенсивностью однократной работы различной продолжительности

Зоны энергообеспечения

Продолжительность работы

Доля энергопродукции

(в %)

время, мин

Дистанция, м

Аэробная

Анаэробная

Анаэробная

10-13"

20-25"

45-60"

1,5-2,0"

Смешанная аэробно-анаэробная

2,5-3"

1000

4,0-6,0"

1500

8,0-13,0"

3000-5000

Аэробная

12,0-20,0"

5000

24,0-45,0"

10000

Более 1,5 час

30000-42195

Анаэробные пути ресинтеза АТФ – это дополнительные пути. Таких путей два креатинфосфатный путь и лактатный.
Креатинфосфатный путь связан с веществом креатинфосфатом. Креатинфосфат состоит из вещества креатина, которое связывается с фосфатной группой макроэргической связью. Креатинфосфата в мышечных клетках содержится в покое 15 – 20 ммоль/кг.
Креатинфосфат обладает большим запасом энергии и высоким сродством с АДФ. Поэтому он легко вступает во взаимодействие с молекулами АДФ, появляющимися в мышечных клетках при физической работе в результате реакции гидролиза АТФ. В ходе этой реакции остаток фосфорной кислоты с запасом энергии переносится с креатинфосфата на молекулу АДФ с образованием креатина и АТФ.

Креатинфосфат + АДФ → креатин + АТФ.

Эта реакция катализируется ферментом креатинкиназой. Данный путь ресинтеза АТФ иногда называют креатикиназным.
Креатинкиназная реакция обратима, но смещена в сторону образования АТФ. Поэтому она начинает осуществляться, как только в мышцах появляются первые молекулы АДФ.
Креатинфосфат – вещество непрочное. Образование из него креатина происходит без участия ферментов. Не используемый организмом креатин, выводится из организма с мочой. Синтез креатинфосфата происходит во время отдыха из избытка АТФ. При мышечной работе умеренной мощности запасы креатинфосфата могут частично восстанавливаться. Запасы АТФ и креатинфосфата в мышцах называют также фосфагены.
Максимальная мощность этого пути составляет 900 -1100 кал/ мин-кг, что в три раза выше соответствующего показателя аэробного пути.
Время развертывания всего 1 – 2 сек.
Время работы с максимальной скоростью всего лишь 8 – 10 сек.

Главным преимуществом креатинфосфатного пути образования АТФ являются

· небольшое время развертывания,
· высокая мощность.

Эта реакция является главным источником энергии для упражнений максимальной мощности: бег на короткие дистанции, прыжки метания, подъем штанги. Эта реакция может неоднократно включаться во время выполнения физических упражнений, что делает возможным быстрое повышение мощности выполняемой работы.

Биохимическая оценка состояния этого пути ресинтеза АТФ обычно проводится двумя показателями: креатиновому коэффициенту и алактатному долгу.

Креатиновый коэффициент – это выделение креатина в сутки. Этот показатель характеризует запасы креатинфосфата в организме.

Алактатный кислородный долг – это повышение потребления кислорода в ближайшие 4 – 5 мин, после выполнения кратковременного упражнения максимальной мощности. Этот избыток кислорода требуется для обеспечения высокой скорости тканевого дыхания сразу после окончания нагрузки для создания в мышечных клетках повышенной концентрации АТФ. У высококвалифицированных спортсменов значение алактатного долга после выполнения нагрузок максимальной мощности составляет 8 – 10 л.

Гликолитический путь ресинтеза АТФ, так же как креатинфосфатный является анаэробным путем. Источником энергии, необходимой для ресинтеза АТФ в данном случае является мышечный гликоген. При анаэробном распаде гликогена от его молекулы под действием фермента фосфорилазы поочередно отщепляются концевые остатки глюкозы в форме глюкозо-1-фосфата. Далее молекулы глюезо-1-фосфата после ряда последовательных реакций превращаются в молочную кислоту. Этот процесс называется гликолиз. В результате гликолиза образуются промежуточные продукты, содержащие фосфатные группы, соединенные макроэргическими связями. Эта связь легко переносится на АДФ с образованием АТФ. В покое реакции гликолиза протекают медленно, но при мышечной работе его скорость может возрасти в 2000 раз, причем уже в предстартовом состоянии.

Максимальная мощность – 750 – 850 кал/мин-кг, что в два раза выше, чем при тканевом дыхании. Такая высокая мощность объясняется содержанием в клетках большого запаса гликогена и наличием механизма активизации ключевых ферментов.
Время развертывания 20-30 секунд.
Время работы с максимальной мощностью – 2 -3 минуты.

Гликолитический способ образования АТФ имеет ряд преимуществ перед аэробным путем:

· он быстрее выходит на максимальную мощность,
· имеет более высокую величину максимальной мощности,
· не требует участия митохондрий и кислорода.

Однако у этого пути есть и свои недостатки:
- процесс малоэкономичен,
- накопление молочной кислоты в мышцах существенно нарушает их нормальное функционирование и способствует утомлению мышцы.

Для оценки гликолиза используют две биохимические методики – измерение концентрации лактата в крови, измерение водородного показателя крови и определение щелочного резерва крови.
Определяют также и содержание лактата в моче. Это дает информацию о суммарном вкладе гликолиза в обеспечение энергией упражнений, выполненных за время тренировки.
Еще одним важным показателем является лактатный кислородный долг. Лактатный кислородный долг – это повышенное потребление кислорода в ближайшие 1 – 1,5 часа после окончания мышечной работы. Этот избыток кислорода необходим для устранения молочной кислоты, образовавшейся при выполнении мышечной работы. У хорошо тренированных спортсменов кислородный долг составляет 20 – 22 л. По величине лактаного долга судят о возможностях данного спортсмена при нагрузках субмаксимальной мощности.

Источником энергии в клетках является вещество аденозинтрифосфат (АТФ), которое при необходимости распадается до аденозинфосфата (АДФ):

АТФ → АДФ + энергия.

При интенсивной нагрузке имеющийся запас АТФ расходуется всего за 2 секунды. Однако АТФ непрерывно восстанавливается из АДФ, что позволяет мышцам продолжать работать. Существует три основные системы восстановления АТФ: фосфатная, кислородная и лактатная.

Фосфатная система

Фосфатная система выделяет энергию максимально быстро, поэтому она важна там, где требуется стремительное усилие, например, для спринтеров, футболистов, прыгунов в высоту и длину, боксеров и теннисистов.

В фосфатной системе восстановление АТФ происходит за счет креатинфосфата (КрФ), запасы которого имеются непосредственно в мышцах:

КрФ + АДФ → АТФ + креатин.

При работе фосфатной системы не используется кислород и не образуется молочная кислота.

Фосфатная система работает только в течение короткого времени — при максимальной нагрузке совокупный запас АТФ и КрФ истощается за 10 секунд. После завершения нагрузки запасы АТФ и КрФ в мышцах восстанавливаются на 70% через 30 секунд и полностью — через 3-5 минут. Это нужно иметь в виду при выполнении скоростных и силовых упражнений. Если усилие длится дольше 10 секунд или перерывы между усилиями слишком короткие, то включается лактатная система.

Кислородная система

Кислородная, или аэробная, система важна для спортсменов на выносливость, так как она может поддерживать длительную физическую работу.

Производительность кислородной системы зависит от способности организма транспортировать кислород в мышцы. За счет тренировок она может вырасти на 50%.

В кислородной системе энергия образуется, главным образом, в результате окисления углеводов и жиров. Углеводы расходуются в первую очередь, так как для них требуется меньше кислорода, а скорость выделения энергии выше. Однако запасы углеводов в организме ограничены. После их исчерпания подключаются жиры — интенсивность работы при этом снижается.

Соотношение используемых жиров и углеводов зависит от интенсивности упражнения: чем выше интенсивность, тем больше доля углеводов. Тренированные спортсмены используют больше жиров и меньше углеводов по сравнению с неподготовленным человеком, то есть более экономично расходуют имеющиеся запасы энергии.

Окисление жиров происходит по уравнению:

Жиры + кислород + АДФ → АТФ + углекислый газ + вода.

Распад углеводов протекает в два шага:

Глюкоза + АДФ → АТФ + молочная кислота.

Молочная кислота + кислород + АДФ → АТФ + углекислый газ + вода.

Кислород требуется только на втором шаге: если его достаточно, молочная кислота не накапливается в мышцах.

Лактатная система

При высокой интенсивности нагрузки поступающего в мышцы кислорода не хватает для полного окисления углеводов. Образующаяся молочная кислота не успевает расходоваться и накапливается в работающих мышцах. Это приводит к ощущению усталости и болезненности в работающих мышцах, а способность выдерживать нагрузку снижается.

В начале любого упражнения (при максимальном усилии — в течение первых 2 минут) и при резком увеличении нагрузки (при рывках, финишных бросках, на подъемах) возникает дефицит кислорода в мышцах, так как сердце, легкие и сосуды не успевают полностью включиться в работу. В этот период энергия обеспечивается за счет лактатной системы, с выработкой молочной кислоты. Чтобы избежать накопления большого количества молочной кислоты в начале тренировки, нужно выполнить легкую разогревающую разминку.

При превышении определенного порога интенсивности организм переходит на полностью анаэробное энергообеспечение, в котором используются только углеводы. Из-за нарастающей мышечной усталости способность выдерживать нагрузку истощается в течение нескольких секунд или минут, в зависимости от интенсивности и уровня подготовки.

Влияние молочной кислоты на работоспособность

Рост концентрации молочной кислоты в мышцах имеет несколько последствий, которые нужно учитывать при тренировках:

  • Нарушается координация движений, что делает тренировки на технику неэффективными.
  • В мышечной ткани возникают микроразрывы, что повышает риск травм.
  • Замедляется образование креатинфосфата, что снижает эффективность спринтерских тренировок (тренировок фосфатной системы).
  • Снижается способность клеток окислять жир, что сильно затрудняет энергообеспечение мышц после истощения запасов углеводов.

В условиях покоя на нейтрализацию половины молочной кислоты, накопившейся в результате усилия максимальной мощности, организму требуется около 25 минут; за 75 минут нейтрализуется 95% молочной кислоты. Если вместо пассивного отдыха выполняется легкая заминка, например, пробежка трусцой, то молочная кислота выводится из крови и мышц намного быстрее.

Высокая концентрация молочной кислоты может вызвать повреждение стенок мышечных клеток, что приводит к изменениям в составе крови. Для нормализации показателей крови может потребоваться от 24 до 96 часов. В этот период тренировки должны быть легкими; интенсивные тренировки сильно замедлят восстановительные процессы.

Слишком высокая частота интенсивных нагрузок, без достаточных перерывов на отдых, приводит к снижению работоспособности, а в дальнейшем — к перетренированности.

Запасы энергии

Энергетические фосфаты (АТФ и КрФ) расходуются за 8-10 секунд максимальной работы. Углеводы (сахар и крахмалы) откладываются в печени и мышцах в виде гликогена. Как правило, их хватает на 60-90 минут интенсивной работы.

Запасы жиров в организме практически неисчерпаемы. Доля жировой массы у мужчин составляет 10-20%; у женщин — 20-30%. У хорошо тренированных спортсменов на выносливость процент жира может находиться в диапазоне от максимально низкого до относительно высокого (4-13%).

Запасы энергии человека
* Высвобождаемая энергия при переходе в АДФ
Источник Запас (при весе 70 кг) Длительность Дли-
тель-
ность

интенсивной
работы
Энергети-
ческая система
Особенности
Граммы Ккал
Фосфаты (фосфатная система энергообеспечения )
Фосфаты 230 8* 8—10 секунд Фосфатная Обеспечивают «взрывную» силу. Кислород не требуется
Гликоген (кислородная и лактатная системы энергообеспечения )
Гликоген 300—
400
1200—
1600
60—90 минут Кислородная и лактатная При нехватке кислорода образуется молочная кислота
Жиры (кислородная система энергообеспечения )
Жиры Больше 3000 Больше 27000 Больше 40 часов Кислородная Требуют больше кислорода; интенсивность работы снижается

По книге Петера Янсена «ЧСС, лактат и тренировки на выносливость».



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!