Упражнения. Питание. Диеты. Тренировки. Спорт

Мышечная ткань. Мышца как орган, вспомогательные органы мышц

Передвижение животного, перемещение частей

его тела относительно друг друга, работа внутренних органов, акты дыхания,

кровообращения, пищеварения, выделения осуществляются благодаря дея-

тельности различных групп мышц.

У высших животных имеются три типа мышц: поперечнополосатые

скелетные (произвольные), поперечнополосатые сердечные (непроизволь-

ные), гладкие мышцы внутренних органов, сосудов и кожи (непроизвольные) .

Отдельно рассматриваются специализированные сократительные образова-

ния - миоэпителиальные клетки, мышцы зрачка и цилиарного тела глаза.

Помимо свойств возбудимости и проводимости, мышцы обладают сокра-

тимостью, т. е. способностью укорачиваться или изменять степень напряже-

ния при возбуждении. Функция сокращения возможна благодаря наличию

в мышечной ткани специальных сократимых структур.

УЛЬТРАСТРУКТУРА И БИОХИМИЧЕСКИЙ СОСТАВ МЫШЦ

Скелетные мышцы. На поперечном сечении про-

дольноволокнистой мышцы видно, что она состоит из первичных

пучков, содержащих 20 - 60 волокон. Каждый пучок отделен соединительно-

тканной оболочкой - перимизиумом, а каждое волокно - эндомизиумом.

В мышце животных насчитывается от нескольких сот до нескольких сот

тысяч волокон с диаметром от 20 до 100 мкм и длиной до 12 - 16 см.

Отдельное волокно покрыто истинной клеточной оболочкой - сарко-

леммой. Сразу под ней, примерно через каждые 5 мкм по длине, располо-

жены ядра. Волокна имеют характерную поперечную исчерченность, которая

обусловлена чередованием оптически более и менее плотных участков.

Волокно образовано множеством (1000 - 2000 и более) плотно упако-

ванных миофибрилл (диаметр 0,5 - 2 мкм), тянущихся из конца в конец.

Между миофибриллами рядами расположены митохондрии, где происходят

процессы окислительного фосфорилирования, необходимые для снабжения

мышцы энергией.

Под световым микроскопом миофибриллы представляют образования,

состоящие из правильно чередующихся между собой темных и светлых

дисков.Диски А называются анизотропными (обладают двойным

лучепреломлением), диски И - изотропными (почти не обладают двойным

лучепреломлением) . Длина А-дисков постоянна, длина И-дисков зависит

от стадии сокращения мышечного волокна. В середине каждого изотропного

диска находится Х-полоска, в середине анизотропного диска - менее выра-

женная М-полоска.

За счет чередования изотронных и анизотропных сегментов каждая

миофибрилла имеет поперечную исчерченность. Упорядоченное же располо-

жение миофибрилл в волокне придает такую же исчерченность волокну

в целом.

Электронная микроскопия показала, что каждая миофибрилла состоит

из параллельно лежащих нитей, или протофибрилл (филаментов) разной

толщины и разного химического состава. В одиночной миофибрилле насчи-

тывае.тся 2000 - 2500 протофибрилл. Тонкие протофибриллы имеют попе-

речник 5 - 8 нм и длину 1 - 1,2 мкм, толстые - соответственно 10 - 15 нм и

1,5 мкм.

Толстые протофибриллы, содержащие молекулы белка миозина, обра-

зуют анизотропные диски. На уровне полоски М миозиновые нити связаны

тончайшими поперечными соединениями. Тонкие протофибриллы, состоящие

в основном из белка актина, образуют изотропные диски.

Нити актина прикреплены к полоске Х, пересекая ее в обоих направле-

ниях; они занимают не только область И-диска, но и заходят в промежутки

между нитями миозина в области А-диска. В этих участках нити актина

и миозина связаны между собой поперечными мостиками, отходящими от

миозина. Эти мостики наряду с другими веществами содержат фермент

АТФ-азу. Область А-дисков, не содержащая нитей актина, обозначается

как зона Н. На поперечном разрезе миофибриллы в области краев А-дисков

видно, что каждое миозиновое волокно окружено шестью актиновыми ни-

тями.

Структурно-функциональной сократительной единицей миофибриллы

является саркомер - повторяющийся участок фибриллы, ограниченный

двумя полосками Х. Он состоит из половины изотропного, целого анизотроп-

ного и половины другого изотропного дисков. Величина саркомера в мышцах

теплокровных составляет около 2 мкм. На электронном микрофото саркомеры

проявляются отчетливо.

Гладкая эндоплазматическая сеть мышечных волокон, или саркоплазма-

тический ретикулум, образует единую систему трубочек и цистерн.

Отдельные трубочки идут в продольном направлении, образуя в зонах Н мио-

фибрилл анастомозы, а затем переходят в полости (цистерны), опоясы-

вающие миофибриллы по кругу. Пара соседних цистерн почти соприкасается

с поперечными трубочками (Т-каналами), идущими от сарколеммы поперек

всего мышечного волокна. Комплекс из поперечн.ого Т-канала и двух

цистерн, симметрично расположенных по его бокам, называется триадой.

У амфибий триады располагаются на уровне Х-полосок, у млекопитающих -

на границе А-дисков. Элементы саркоплазматического ретикулума участ-

-вуют в распространении возбуждения внутрь мышечных волокон, а также

в процессах-сокращения и расслабления мышц.

В 1 г поперечнополосатой мышечной ткани содержится около 100 мг

сократительных белков, главным образом миозина и актина, образуюших

актомиозиновый комплекс. Эти белки нерастворимы в воде, но могут быть

экстрагированы растворами солей. К другим сократительным белкам отно-

сятся тропомиозин и комплекс тропонина (субъединицы Т, 1, С), содержа-

шиеся в тонких нитях.

В мышце содержатся также миоглобин, гликолитические ферменты и

другие растворимые белки, не выполняющие сократительной функции

3. Белковый состав скелетной мышцы

Молекулярная Содержание.

Белок масса, дальтон, белка, %

тыс.

Миозин 460 55 - 60

Актин-р 46 20 - 25

Тропомиозин 70 4 - 6

Комплекс тропонина (ТпТ, 76 4 - 6

Тп1, Тпс)

Актинин-и 180 1 - 2

Другие белки (миоглобин, 5 - 10

ферменты и пр.)

Гладкие мышцы. Основными структурными элементами гладкой мышеч-

ной ткани являются миодиты - мышечные клетки веретенообразной и звезд-

чатой формы длиной 60 - 200 мкм и диаметром 4 - 8 мкм.Наиболь-

шая длина клеток (до 500 мкм) ыаблюдается в матке во время беременности.

Ядро находится в середине клеток. Форма его эллипсоидная, при сокращении

клетки оно скручивается штопорообразно, Вокруг ядра сконцентрированы

митохондрии и другие трофические компоненты.

Миофибриллы в саркоплазме гладкомышечных клеток, по-видимому,

отсутствуют. Имеются лишь продольно ориентированные, нерегулярно

распределенные миозиновые и актиновые протофибриллы длиной 1 - 2 мкм.

Поэтому поперечной исчерченности волокон не наблюдается. В протоплазме

клеток находятся в большом количестве пузырьки, содержащие Са++,

которые, вероятно, соответствуют саркоплазматическому ретикулуму попе-

речнополосатых мыщц.

В стенках большинства полых органов клетки гладких мышц соединены

особыми межклеточными контактами (десмосомами) и образуют плотные

пучки, сцементированные гликопротеиновым межклеточным веществом,

коллагеновыми и эластичными волокнами.

Такие образования, в которых клетки тесно соприкасаются, но цитоплаз-

матическая и мембранная непрерывность между ними отсутствует (простран-

ство между мембранами в области контактов составляет 20 - 30 нм),

называют «функциональным синцитием».

Клетки, образующие синцитий, называют унитарными; возбуждение

может беспрепятственно распространяться с одной такой клетки на другую,

хотя нервные двигательные окончания вегетативной нервноЙ системы расло-

ложены лишь на отдельных из них. В мышечных слоях некоторых крупных

сосудов, в мышцах, поднимающих волосы, в ресничной мышде глаза нахо-

дятся мультиунитарные клетки, снабженные отдельными нервными волок-

нами и функционирующие независимо одна от другой.

МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ

В обычных условиях скелетные мышцы возбуж-

даются импульсами, которые поступают по волокнам двигательных нейро-

нов (мотонейронов), находящихся в передних рогах спинного мозга или

в ядрах черепномозговых нервов.

В зависимости от количества концевых разветнлений нервное волокно

образует синаптические контакты с болыыим или меньшим числом мышечных

волокон.

Мотонейрон, его длинный отросток (аксон) и группа мышечных волокон,

иннервируемых зтим аксоном, составляют двигательную, или нейромоторную,

единицу.

Чем более тонка, специализированна в работе мышца, тем меньшее количество

мышечных волокон входит в нейромоторную единицу. Малые двигвтельные

единицы включают лишь 3 - 5 волокон (например, в мышцах глазного яблока,

мелких мышцах лицевой части головы), большие двигательные единицы - до

волонно (аксон) нескольких тысяч волокон (в крупных мышцах туловища и

конечностей). В большинстве мышц двигательные единицы соответствуют

первичным мышечным пучкам, каждый из которых содержит от 20 до 60

мышечных волокон. Двигательные единицы различаются не только числом

волокон, но и размером нейронов - большие двигательные единицы включают

более крупный нейрон с относительно более толстым аксоном.

Нейромоторная единица работает как единое делое: импульсы,

исходящие от мотонейрона, приводят в действие мышечные волокна.

Сокращению мышечных волокон предшествует их злектрическое возбуж-

дение, вызываемое разрядом мотонейронов в области концевых пластинок.

Возникающий под влиянием медиатора потенциал концевой

пластинки (ПКГ1), достигнув порогового уровня (сколо - 30 мВ), вызывает

генерацию потенциала действия, распространяющегося в обе стороны вдоль

мышечного волокиа.

Возбудимость мышечных волокон ниже возбудимости нервных волокон,

иннервирующих мышцы, хотя критический уровень деполяризации мембран

в обоих случаях одинаков. Это объясняется тем, что потенциал покоя мышеч-

ных волокон выше (около - 90 мВ) потенциала покоя нервных волокон

(- 70 мВ). Следовательно, для возникновения потенциала действия в мы-

шечном волокне необходимо деполяризовать мембрану на большую величину,

чем в нервном волокне.

Длительность потенциала действия в мышечном волокне составляет

5 мс (в нервном соответственно 0,5 - 2 мс), скорость проведения возбуж-

дения до 5 м/с (в миелинизированных нервных волокнах - до 120 м/с).

Молекулярные механизмы сокращения. Сокращение - это изменение

механического состояния миофибриллярного аппарата мышечных волокон

цод влиянием нервных ампульсов. Внешне сокращение проявляется в изме-

нении длины мышцы или степени ее напряжения, или одновременно того

и другого.

Согласно лринятой «теории скольжения» в основе сокращения лежит

взаимодействие между актиновыми и миозиновымй нитями миофибрилл

вследствие образования поперечных мостиков между ними. В результате

происходит «втягивание» тонких актиновых миофиламентов между миози-

новыми.

Во время скольжения сами актиновые и миозиновые нити не укора-

чиваются; длина А-дисков также остается прежней, в то время как 3-диски

и Н-зоны становятся более узкими. Не меняется длина нитей и при растя-

жении мышцы, уменьшается ли~иь степень их взаимного перекрывания.

Эти движения основаны на обратимом изменении конформации концевых

частей молекул миозина (поперечных выступов с головками), при котором

связк между толстым филаментом миозина и тонким филаментом актина

образуются, исчезают и возникают вновь.

До раздражения или в фазе расслабления мономер актина недоступен

для взаимодействия, так как этому мешает комплекс тропонина и определен-

ная конформация (подтягивание к оси филамента) концевых фрагментов

молекулы миозина.

В основе молекулярного механизма сокращения лежит процесс так

называемого электромеханического сопряжения, причем ключевую роль

в процессе взаимодействия миозиновых и актиновых миофиламентов играют

ионы Са++, содержащиеся в саркоплазматическом ретикулуме. Это подтвер-

ждается тем, что в эксперименте при инъекции кальция внутрь волокон

возникает их сокращение.

Возникший потенциал распространяется не только по поверхностной

мембране мышечного волокна, но и по мембранам, выстилаюшим попе-

речные трубочки (Т-систему волокна). Волна деполяризации захватывает

расположенные рядом мембраны цистерн саркоплазматического ретикулума,

что сопровождается активацией кальциевых каналов в мембране и выходом

ионов Са++ в межфибриллярное пространство.

Влияние ионов Са+ + на взаимодействие актина и миозина опосред-

ствовано тропомиозином и тропониновым комплексом которые локализованы

в тонких нитях и составляют до 1/3 их массы. При связывании ионов Са++

с тропонином (сферические молекулы которого «сидят» на цепях актина)

последний деформируется, толкая тропомиозин в желобки между двумя

цепями актина. При этом становится возможным взаимодействие актина

с головками миозина, и возникает сила сокращения. Одновременцо нроисхо-

дит гидролиз АТФ.

Поскольку однократный поворот «головок» укорачивает саркомер лишь

на 1/100 его длины (а при изотоническом сокращении саркомер мышцы

может укорачиваться на 50 % длины за десятые доли секунды), ясно,

что поперечные мостики должны совершать примерно 50 «гребковых» дви-

жений за тот же промежуток времени. Совокупное укорочение последо-

вательно расположенных саркомеров миофибрилл приводит к заметному

сокращению мышцы.

При одиночном сокращении процесс укорочения вскоре закэнчивается.

Кальциевый насос, приводимый в действие энергией АТФ, снижает концент-

рацию Са++ в цитоплазме мышц до 10 М и повышает ее в сарколлазма-

тическом ретикулуме до 10 М, где Са++ связывается белком кальсек-

вестрином.

Снижение уровня Са++ в саркоплазме подавляет АТФ-азную актив-

ность актомиозина; при этом поперечные мостики миозина отсоединяются

от актина. Происходит расслабление, удлинение мышцы, которое является

пассивным процессом.

Б случае, если стимулы поступают с высокой частотой {20 Гц и более),

уровень Са++ в саркоплазме в период между стймулами остается высоким,

так как кальциевый насос не успевает «загнать» все ионы Са++ в систему

саркоплазматического ретикулума. Это является причиной устойчивого

тетанического сокращения мышц.

Таким образом, сокрашение и расслабление мышцы представляет собой

серию процессов, развертывающихся в следующей последовательности:

стимул - > возникновение потенциала действия - > электромеханическое со-

пряжение (проведение возбуждения по Т-трубкам, высвобождение Са++ и

воздействие его на систему тропонин - тропомиозин - актин) - > образова-

ние поперечных мостиков и «скольжение» актиновых нитей вдоль миози-

новых - > сокращение миофибрилл - > снижение концентрации ионов Са++

вследствие работы кальциевого насоса - > пространственное изменение

белков сократительной системы - > расслабление миофибрилл.

После смерти мышды остаются напряженными, наступает так назы-

ваемое трупное окоченение. При этом поперечные связи между филаментами

актина и миозина сохраняются и не могут разорваться по причине снижения

уровня АТФ и невозможности активного транспорта Са++ в саркоплазма-

тический ретикулум.

СТРУКТУРА И ФУНКЦИИ НЕЙРОНА

Материалом для построения ЦНС и ее проводни-

ков является нервная ткань, состоящая из двух компонентов - нервных

клеток (нейронов) и нейроглии. Основными функциональными элементами

ЦНС являются нейроны: в теле животных их содержится примерно 50 млрд,

из которых лишь небольшая часть расположена на периферических участках

тела.

Нейроны составляют 10 - 15 % общего числа клеточных элементов

в нервной системе. Основную же часть ее занимают клетки нейроглии.

У высших животных в процессе постнатального онтогенеза дифферен-

цированные нейроны не делятся. Нейроны существенно различаются по

форме (пирамидные, круглые, звездчатые, овальные), размерами (от 5 до

150 мкм), количеству отростков, однако они имеют и общие свойства.

Любая нервная клетка состоит из тела (сомы, перикариона) и отростков

разного типа - дендритов (от лат. дендрон - дерево) и аксона (от лат.

аксон - ось). В зависимости от числа отростков различают униполярные

(одноотростковые), биполярные (двухотростковые) и мультиполярные

(многоотростковые) нейроны. Для ЦНС позвоночных типичны биполярные

и особенно мультиполярные нейроны.

Дендритов может быть много, иногда они сильно ветвятся, различной

толщины и снабжены выступами - «шипиками», которые сильно увеличи-

вают их поверхность.

Аксон (нейрит) всегда один. Он начинается от сомы аксонным холмиком,

покрыт специальной глиальной оболочкой, образует ряд аксональных окои-

чаний - терминалий. Длина аксона может достигать более метра. Аксонный

холмик и часть аксона, не покрытая миелиновой оболочкой, составляют

начальный сегмент аксона; его диаметр невелик,(1 - 5 мкм).

В ганглиях спинно- и черепномозговых нервов распространены так

называемые псевдоуниполярные клетки; их дендрит и аксон отходят от

клетки в виде одного отростка, который затем Т-образно делится.

Отличительными особенностями нервных клеток являются крупное

ядро (до 1/3 площади цитоплазмы), многочисленные митохондрии, сильно

развитый сетчатый аппарат, наличие характерных органоидов - тигроидной

субстанции и нейрофибрилл. Тигроидная субстанция имеет вид базофильных

глыбок и представляет собой гранулярную цитоплазматическую сеть с мно-

жеством рибосом. Функция тигроида связана с синтезом клеточных белков.

При длительном раздражении клетки или перерезке аксонов это вещество

исчезает. Нейрофибриллы - это нитчатые, четко выраженные структуры,

находящиеся в теле, дендритах и аксоне нейрона. Образованы еще более

тонкими элементами - нейрофиламентами при их агрегации с нейротрубочками.

Выполняют, по-видимому, опорную функцию.

В цитоплазме аксона отсутствуют рибосомы, однако имеются митохондрии,

эндоплазматический ретикулум и хорошо развитый аппарат нейрофиламентов и

нейротрубочек. Установлено, что аксоны представляют собой очень сложные

транспортные системы, причем за отдельные виды транспорта (белков,

метаболитов, медиаторов) отвечают, по-видимому, разные субклеточные

структуры.

В некоторых отделах мозга имеются нейроны, которые вырабатывают гранулы

секрета мукопротеидной или гликопротеидной природы. Они обладают одновременно

физиологическими признаками нейронов и железистых клеток. Эти клетки

называются нейросекреторными.

Функция нейронов заключается в восприятии сигналов от рецепторов

или других нервных клеток, хранении и переработке информации и пере-

даче нервных импульсов к другим клеткам - нервным, мышечным или секреторным.

Соответственно имеет место специализация нейронов. Их подразделяют на

3 группы:

чувствительные (сенсорные, афферентные) нейроны, воспринимающие сигналы

из внешней или внутренней среды;

ассоциативные (промежуточные,вставочные) нейроны,связывающие разные

нервные клетки друг с другом;

двигательные (эффекторные) нейроны, передающие нисходящие влияния от

вышерасположенных отделов ЦНС к нижерасположенным или из ЦНС

к рабочим органам.

Тела сенсорных нейронов располагаются вне ЦНС:в спинномозговых

ганглиях и соответствующих им ганглиях головного мозга. Эти нейроны

имеют псевдоуниполярную форму с аксоном и аксоноподобным дендритом.

К афферентным нейронам относятся также клетки, аксоны

которых составляют восходящие пути спинного и головного мозга.

Ассоциативные нейроны - наиболее многочисленная группа нейронов.

Они имеют более мелкий размер, звездчатую форму и аксоны с многочис-

ленными разветвлениями; расположены в сером веществе мозга. Осуществ-

ляют связь между разными нейронами, например чувствительным и двига-

тельным в пределах одного сегмента мозга или между соседними сегментами;

их отростки не выходят за пределы ЦНС.

Двигательные нейроны также расположены в ЦНС. Их аксоны участ-

вуют в передаче нисходящих влияний от вышерасположенных участков

мозга к нижерасположенным или из ЦНС к рабочим органам (например,

мотонейронЫ в передних рогах спинного мозга) . Имеются эффектор-

ные нейроны и в вегетативной нервной системе. Особенностями этих ней-

ронов являются разветвленная сеть дендритов и один длинный аксон.

Воспринимающей частью нейрона служат в основном ветвящиеся

дендриты, снабженные рецепторной мембраной. В результате суммации

местных процессов возбуждения в наиболее легковозбудимой триегерной

зоне аксона возникают нервные импульсы (потенциалы действия), которые

распространяются по аксону к концевым нервным окончаниям. Таким обра-

зом, возбумсдение проходит по нейрону в одном направлении - от дендритов

к соме и аксону.

Нейроглия. Основную массу нервной ткани составляют глиальные

элементы, выполняющие вспомогательные функции и заполняющие почти

все пространство между нейронами. Анатомически среди них различают

клетки нейроглии в мозге (олигодендроциты и астроциты) и шванновские

клетки в периферической нервной системе. Олигодендроциты и шванновские

клетки формируют вокруг аксонов миэлиновые обалочки.

Между глиальными клетками и нейронами имеются щели шириной

15 - 20 нм, которые сообщаются друг с другом, образуя интерстициальное

пространство, заполненное жидкостью. Через это пространство

происходит обмен веществ между нейроном и глиальными клетками, а

также снабжение нейронов кислородом и питательными веществами путем

диффузии. Глиальные клетки, по-видимому, выполняют лишь опорные и

защитные функции в ЦНС, а не являются, как предполагалось, источни-

ком их питания или хранителями информации.

По свойствам мембраны глиальные клетки отличаются от нейронов:

они пассивно реагируют на электрический ток, их мембраны не генери-

руют распространяющегося импульса. Между клетками нейроглии су-

ществуют плотные контакты (участки низкого сопротивления), кото-

рые обеспечивают прямую электрическую связь. Мембранный потен-

циал глиальных клетов выше, чем у нейронов, и зависит главным образом

от концентрации ионов К+ в среде.

Когда при активной деятельности нейронов во внеклеточном простран-

стве увеличивается концентрация

К+, часть его поглощается деполяризованными глиальными элементами.

Эта буферная функция глии обеспечивает относительно постоянную вне-

клеточную концентрацию К+.

Клетки глии - астроциты - расположены между телами нейронов

и стенкой капилляров, их отростки контактируют со стенкой последних.

Эти периваскулярные отростки являются элементами гематоэнцефаличе-

ского барьера.

Клетки микроглии выполняют фагоцитарную функцию, число их резко

возрастает при повреждении ткани мозга.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Мышца как орган

В организме человека выделяют 3 вида мышечной ткани:

Скелетная

Поперечнополосатая

Поперечнополосатая скелетная мышечная ткань образована цилиндрической формы мышечными волокнами длиной от 1 до 40 мм и толщиной до 0.1 мкм, каждое из которых представляет собой комплекс, состоящий из миосимпласта и миосателито, покрытых общей базальной мембраной, укрепленной тонкими коллагеновыми и ретикулярными волокнами. Базальная мембрана формирует сарколемму. Под плазмолеммой миосимпласта располагается множество ядер.

В саркоплазме находятся цилиндрические миофибриллы. Между миофибриллами залегают многочисленные митохондрии с развитыми кристами и частичками гликогена. Саркоплазма богата белков миоглобином, который подобно гемоглобину, может связывать кислород.

В зависимости от толщины волокон и содержания в них миоглобина различают:

Красные волокна:

Богаты саркоплазмой, миоглобином и митохондриями

Однако они самые тонкие

Миофибриллы в них расположены группами

Окислительные процессы более интенсивны

Промежуточные волокна:

Беднее миоглобином и митохондриями

Более толстые

Окислительные процессы менее интенсивны

Белые волокна:

- самые толстые

- количество миофибрилл в них больше и располагаются они равномерно

- окислительные процессы менее интенсивны

- еще ниже содержание гликогена

Структура и функция волокон неразрывно связана между собой. Так белые волокна сокращаются быстрее, но и быстро утомляются. (спринтеры)

Красные способы к более длительному сокращению. У человека мышцы содержат все типы волокон, в зависимости от функции мышцы в ней преобладают тот или иной тип волокон. (стайеры)

Строение мышечной ткани

Волокна отличаются поперечной исчерченностью: темные анизотропные диски (А-диски) чередуются со светлыми изотропными дисками (I-диски). Диск А разделен светлой зоной H, в центре которой проходит мезофрагма (линия М), диск I разделен темной линией (телофрагма – Z линия). Телофрагма толще в миофибриллах красных волокон.

Миофибриллы содержат сократительные элементы – миофиламенты, среди которых веделяют толстые (миозивные), занимающие А диск, и тонкие (актиновые), лежащие в I-диске и прикрепляющиеся к телофрагмам (Z-пластинки содержат белок альфа-актин), причем концы их проникают в А-диск между толстыми миофиламентами. Участок мышечного волокна расположенный между двумя телофрагмами, представляет собой сарконнер – сократительную единицу миофибрилл. Благодаря тому, что границы саркомеров всех миофибрилл совпадают, возникает регулярная исчерченность, которая хорошо видна на продольных срезах мышечного волокна.

На поперечных срезах отчетливо видны миофибриллы в виде округлых точек на фоне светлой цитоплазмы.

Согласно теории Huxley, Hanson, мышечное сокращение – результат скольжения тонких (актиновых) филаментов относительно толстых (миозиновых). При этом длина филаментов диска А не изменяется, диск I уменьшается в размерах и исчезает.

Мышцы как орган

Строение мышц. Мышца как орган состоит из пучков поперечнополосатых мышечных волокон. Эти волокна, идущие параллельно друг другу, связываются рыхлой соединительной тканью в пучки первого порядка. Несколько таких первичных пучков соединяются, в свою очередь образуя пучки второго порядка и т.д. в целом мышечные пучки всех порядков объединяются соединительнотканной оболочкой, составляя мышечное брюшко.

Соединительнотканные прослойки, имеющиеся между мышечными пучками, по концам мышечного брюшка, переходят в сухожильную часть мышцы.

Так как сокращение мышцы вызывается импульсом, идущим от ЦНС, то каждая мышцы связана с ней нервами: афферентным, являющимся проводником «мышечного чувства» (двигательный анализатор, по К.П. Павлову), и эфферентным, приводящим к ней нервное возбуждение. Кроме того, к мышце подходят симпатические нервы, благодаря которым мышцы в живом организме всегда находится в состоянии некоторого сокращения, называемого тонусом.

В мышцах совершается очень энергичный обмен веществ, в связи с чем они весьма богато снабжены сосудами. Сосуды проникают в мышцу с ее внутренней стороны в одном или нескольких пунктах, называемых воротами мышцы.

В мышечные ворота вместе с сосудами входят и нервы, вместе с которыми они разветвляются в толще мышцы соответственно мышечным пучкам (вдоль и поперек).

В мышце различают активно сокращающуюся часть – брюшко и пассивную часть – сухожилие.

Таким образом, скелетная мышцы состоит не только из поперечнополосатой мышечной ткани, но также из различных видов соединительной ткани, из нервной ткани, из эндотелия мышечных волокон (сосуды). Однако преобладающей является поперечнополосатая мышечная ткань, свойство которой – сократимость, она определяет функцию мускула как органа – сокращение.

Классификация мышц

Мышц насчитывается до 400 (в человеческом организме).

По форме делятся на длинные, короткие и широкие. Длинные соответствуют рычагам движения, к которым они прикрепляются.

Некоторые длинные начинаются несколькими головками (многоглавые) на различных костях, что усиливает их опору. Встречаются мышцы двуглавые, трехглавые и четырехглавые.

В случае слияния мышц разного происхождения или развившихся из нескольких миотонов между ними остаются промежуточные сухожилия, сухожильные перемычки. Такие мышцы имеют два брюшка или больше – многобрюшные.

Варьирует также число их сухожилий, которыми заканчиваются мышцы. Так, сгибатели и разгибатели пальцев рук и ног имеют по несколько сухожилий, благодаря чему сокращения одного мышечного брюшка дает двигательные эффект сразу на несколько пальцев, чем достигается экономия в работе мышц.

Широкие мышцы – располагаются преимущественно на туловище и имеют расширенное сухожилие, называемое сухожильным растяжением или апоневрозом.

Встречаются различные формы мышц: квадратная, треугольная, пирамидальная, круглая, дельтовидная, зубчатая, камбаловидная и др.

По направлению волокон, обусловленному функционально, различаются мышцы с прямыми параллельными волокнами, с косыми волокнами, с поперечными, с круговыми. Последние образуют жомы, или сфинктеры, окружающие отверстия.

Если косые волокна присоединяются к сухожилию с одной стороны, то получается так называемая одноперистая мышцы, а если с двух сторон, то двуперистая. Особое отношение волокон к сухожилию наблюдается в полусухожильной и полуперепончатой мышцах.

Сгибатели

Разгибатели

Приводящие

Отводящие

Вращатели кнутри (пронаторы), кнаружи (супинаторы)

Онто-филогенетические аспекты развития опорно-двигательного аппарата

Элементы опорнодвигательного аппарата туловища у всех позвоночных развиваются из первичных сегментов (сомитов) дорсальной мезодермы, залегающих по бокам и нервной трубки.

Возникающая из медиовентральной части сомита мезенхима (склеротом) идет на образование вокруг хорды скелета, а средняя часть первичного сегмента (миотом) дает мышцы (из дорсолатеральной части сомита образуется дерматом).

При образовании хрящевого, а впоследтсвии костного скелета мышцы (миотомы) получают опору на твердых частях скелета, которые в силу этого располагаются также метамерно, чередуясь с мышечными сегментами.

Миобласты вытягиваются,сливаются друг с другом и превращаются в сегменты мышечных волокон.

Первоначально миотомы на каждой стороне отделяются друг от друга поперечными соединительнотканными перегородками. Также сегментированное расположение мускулатуры туловища у низших животных остается на всю жизнь. У высших же позвоночных и у человека благодаря более значительной дифференцировке мышечных масс сегментация значительно сглаживается, хотя следы ее и остаются как в дорсальной, так и в вентральной мускулатуре.

Миотомы разрастаются в вентральном направлении и разделяются на дорсальную и вентральную часть. Из дорсальной части миотомов возникает спинная мускулатура, из вентральной – мускулатура, расположенная на передней и боковой сторонах туловища и называемая вентральной.

Соседние миотомы могут срастаться между собой, но каждый из сросшихся миотомов удерживает относящийся к нему нерв. Поэтому мышцы, происходящие из нескольких миотомов иннервируются несколькими нервами.

Виды мышц в зависимости от развития

На основании иннервации всегда можно отличить аутохтонную мускулатуру от сместившихся в эту область других мышц – пришельцев.

    Часть мышц, развившихся на туловище, остается на месте, образуя местную (аутохтонную) мускулатуру (межреберные и короткие мышцы м/у отростками позвонков.

    Другая часть в процессе развития перемещается с туловища на конечности – трункофугальные.

    Третья часть мышц, возникнув на конечностях, перемещается на туловище. Это трункопетальные мышцы.

Развитие мышц конечностей

Мускулатура конечностей образуется из мезенхимы почек конечностей и получает свои нервы от передних ветвей спинномозговых нервов при посредстве плечевого и пояснично-крестцового сплетений. У низших рыб из миотов туловища вырастают мышечные почки, которые разделяются на два слоя, расположенные с дорсальной и вентральной сторон скелета.

Подобным же образом у наземных позвоночных мышцы по отношению к зачатку скелета конечности первоначально располагаются дорсально и вентрально (разгибатели и сгибатели).

Трунктопетальные

При дальнейшей дифференцировке зачатки мышц передней конечности разрастаются и проксимальном направлении и покрывают аутохтонную мускулатуру туловища со стороны груди и спины.

Кроме этой первичной мускулатуры верхней конечности, к поясу верхней конечности присоединяются еще трункофугальные мышцы, т.е. производные вентральной мускулатуры, служащшие для передвижения и фиксации пояса и переместившиеся на него с головы.

У пояса задней (нижней) конечности вторичных мышц не развивается, так как он неподвижно связан с позвоночным столбом.

Мышцы головы

Возникают отчасти из головных сомитов, а главным образом из мезодермы жаберных дуг.

Третья ветвь тройничного нерва (V)

Промежуточно-лицевой нерв (VII)

Языкоглоточный нерв (IX)

Верхняя гортанная ветвь блуждающего нерва (Х)

Пятая жаберная дуга

Нижняя гортанная ветвь блуждающего нерва (Х)

Работа мышц (элементы биомеханики)

Каждая мышца имеет подвижную точку и неподвижную точку. Сила мышцы зависит от количества входящих в ее состав мышечных волокон и определяется площадью разреза в том месте, через которое проходят все волокна мышцы.

Анатомический поперечник – площадь поперечного сечения, перпендикулярного длиннику мышцы и проходящего через брюшко в наиболее широкой его части. Этот показатель характеризует величину мышцы, ее толщину (фактически определяет объем мышцы).

Абсолютная сила мышцы

Определяется отношением массы груза (кг), который мышца может поднять и площади ее физиологического поперечника (см2)

У икроножной мышцы – 15,9 кг/см2

У трехглавой – 16,8 кг/см2

Растительные и животные организмы различаются не только внешне, но и, конечно, внутренне. Однако самая главная отличительная черта образа жизни - это то, что животные способны активно передвигаться в пространстве. Обеспечивается это благодаря наличию в них особых тканей - мышечных. Их мы и рассмотрим подробнее дальше.

Животные ткани

В организме млекопитающих животных и человека выделяют 4 типа тканей, выстилающих все органы и системы, формирующих кровь и осуществляющих жизненно важные функции.

Совокупное сочетание всех перечисленных видов обеспечивает нормальное строение и функционирование живых существ.

Мышечная ткань: классификация

Особую роль в активной жизнедеятельности человека и животных играет специализированная структура. Ее название - мышечная ткань. Строение и функции ее весьма своеобразны и интересны.

Вообще данная ткань неоднородна и имеет свою классификацию. Следует рассмотреть ее подробнее. Существуют такие разновидности мышечных тканей, как:

  • гладкая;
  • поперечнополосатая;
  • сердечная.

Каждая из них имеет свое место локализации в организме и выполняет строго определенные функции.

Строение клетки мышечной ткани

Все три разновидности мышечных тканей имеют свои особенности строения. Однако можно выделить общие закономерности устройства клетки такой структуры.

Во-первых, она удлиненной формы (иногда достигает 14 см), то есть тянется вдоль всего мышечного органа. Во-вторых, она многоядерная, так как именно в этих клетках наиболее интенсивно протекают процессы синтеза белка, образования и распада молекул АТФ.

Также особенности строения мышечной ткани в том, что ее клетки содержат пучки миофибрилл, сформированных двумя белками - актином и миозином. Именно они обеспечивают главное свойство этой структуры - сократимость. Каждая нитевидная фибрилла включает в себя полосы, в микроскоп видимые как более светлые и темные. Ими являются белковые молекулы, образующие что-то вроде тяжей. Актин формирует светлые, а миозин - темные.

Особенности мышечной ткани любого типа в том, что их клетки (миоциты) образуют целые скопления - пучки волокон, или симпласты. Каждый из них изнутри выстлан целыми скоплениями фибрилл, в то время как сама мельчайшая структура состоит из названных выше белков. Если рассмотреть образно данный механизм строения, то получается, словно матрешка, - меньшее в большем, и так до самых пучков волокон, объединенных рыхлой соединительной тканью в общую структуру - определенный тип мышечной ткани.

Внутренняя среда клетки, то есть протопласт, содержит все те же самые структурные компоненты, что и любая другая в организме. Отличие - в количестве ядер и их ориентации не в центре волокна, а в периферической части. Также в том, что деление происходит не за счет генетического материала ядра, а благодаря особым клеткам, носящим название сателлитов. Они входят в состав оболочки миоцита и активно выполняют функцию регенерации - восстановления целостности ткани.

Свойства мышечных тканей

Как и любые другие структуры, данные разновидности тканей имеют свои особенности не только в строении, но и в выполняемых функциях. Основные свойства мышечных тканей, благодаря которым они могут это делать:

  • сокращение;
  • возбудимость;
  • проводимость;
  • лабильность.

Благодаря большому количеству кровеносных сосудов и капилляров, питающих мышцы, они могут быстро воспринимать сигнальные импульсы. Данное свойство называется возбудимостью.

Также особенности строения мышечной ткани позволяют ей быстро реагировать на любые раздражения, посылая ответный импульс в кору головного и спинной мозга. Так проявляется свойство проводимости. Это очень важно, так как способность вовремя отреагировать на угрожающие воздействия (химического, механического, физического характера) - важное условие нормальной безопасной жизнедеятельности любого организма.

Мышечная ткань, строение и функции, которые она выполняет - все это в целом сводится к главному свойству, сократимости. Оно подразумевает произвольное (контролируемое) или непроизвольное (без осознанного управления) уменьшение или увеличение длины миоцита. Происходит это благодаря работе белковых миофибрилл (актиновых и миозиновых нитей). Они могут растягиваться и истончаться почти до невидимости, а затем снова быстро восстанавливать свою структуру.

В этом состоят особенности мышечной ткани любого типа. Так построена работа сердца человека и животных, их сосудов, глазных мышц, вращающих яблоко. Именно данное свойство обеспечивает способность к активному движению, перемещению в пространстве. Что бы сумел сделать человек, если бы его мышцы не могли сокращаться? Ничего. Поднять и опустить руку, подпрыгнуть, присесть, танцевать и бегать, выполнять различные физические упражнения - все это помогают делать только мышцы. А именно миофибриллы актиновой и миозиновой природы, образующие миоциты ткани.

Последнее свойство, о котором необходимо упомянуть, это лабильность. Она подразумевает способность ткани быстро восстанавливаться после возбуждения, приходить в абсолютную работоспособность. Лучше миоцитов это могут делать только аксоны -

Строение мышечных тканей, обладание перечисленными свойствами, - главные причины выполнения ими ряда важнейших функций в организмах животных и человека.

Гладкая ткань

Одна из разновидностей мышечных. Имеет мезенхимное происхождение. Устроена отлично от других. Миоциты небольшие, слегка вытянутые, напоминают утолщенные в центре волокна. Средний размер клетки составляет около 0,5 мм в длину и 10 мкм в диаметре.

Протопласт отличается отсутствием сарколеммы. Ядро одно, а вот митохондрий много. Локализация генетического материала, отделенного от цитоплазмы кариолеммой, - в центре клетки. Плазматическая мембрана устроена достаточно просто, сложных белков и липидов не наблюдается. Рядом с митохондриями и по всей цитоплазме разбросаны миофибрилльные кольца, содержащие актин и миозин в небольших количествах, однако достаточных для сокращения ткани. Эндоплазматическая сеть и комплекс Гольджи несколько упрощены и редуцированы по сравнению с другими клетками.

Гладкая мышечная ткань образована пучками миоцитов (веретенообразных клеток) описанного строения, иннервируется эфферентными и афферентными волокнами. Подчиняется управлению вегетативной нервной системы, то есть сокращается, возбуждается без осознанного контроля организма.

В некоторых органах гладкая мускулатура сформирована благодаря индивидуальным одиночным клеткам с особенной иннервацией. Хотя такое явление достаточно редко. В целом можно выделить два основных типа клеток гладкой мускулатуры:


Первая группа клеток малодифференцированна, содержит множество митохондрий, хорошо выраженный аппарат Гольджи. В цитоплазме явно прослеживаются пучки сократительных миофибрилл и микрофиламентов.

Вторая группа миоцитов специализируется на синтезе полисахаридов и сложных комбинативных высокомолекулярных веществах, из которых в дальнейшем строятся коллаген и эластин. Ими же вырабатывается значительная часть межклеточного вещества.

Места локализации в организме

Гладкая мышечная ткань, строение и функции, которые она выполняет, позволяют ей концентрироваться в разных органах в неодинаковом количестве. Так как иннервация не подчиняется контролю со стороны направленной деятельности человека (его сознания), то и места локализации будут соответствующие. Такие, как:

  • стенки кровеносных сосудов и вен;
  • большая часть внутренних органов;
  • кожа;
  • глазное яблоко и прочие структуры.

В связи с этим характер активности гладкой мышечной ткани - быстродействующий низкий.

Выполняемые функции

Строение мышечных тканей накладывает прямой отпечаток на выполняемые ими функции. Так, гладкая мускулатура нужна для следующих операций:


Желчный пузырь, места впадения желудка в кишку, мочевой пузырь, лимфатические и артериальные сосуды, вены и многие другиеорганы - все они способны нормально функционировать только благодаря свойствам гладкой мускулатуры. Управление, еще раз оговоримся, строго автономное.

Поперечно-полосатая мышечная ткань

Рассмотренные выше не подчиняются управлению со стороны сознания человека и не отвечают за его движение. Это прерогатива следующего вида волокон - поперечно-полосатых.

Сначала разберемся, за что им было дано такое название. При рассмотрении в микроскоп можно увидеть, что данные структуры имеют четко выраженную исчерченность поперек определенными тяжами - нитями белка актина и миозина, образующими миофибриллы. Это и послужило причиной для такого названия ткани.

Поперечно-мышечная ткань имеет миоциты, содержащие множество ядер и представляющие собой результат слияния нескольких клеточных структур. Такое явление обозначается терминами "симпласт" или "синцитий". Внешний вид волокон представлен длинными, вытянутыми цилиндрическими клетками, плотно соединенными между собой общим межклеточным веществом. Кстати, существует определенная ткань, которая образует эту среду для сочленения всех миоцитов. Ею обладает и гладкая мышечная. Соединительная ткань - основа которая может быть как плотной, так и рыхлой. Она же формирует целый ряд сухожилий, при помощи которых поперечно-полосатая скелетная мускулатура крепится к костям.

Миоциты рассматриваемой ткани, кроме значительного размера, имеют еще несколько особенностей:

  • саркоплазма клеток содержит большое количество хорошо различимых микрофиламентов и миофибрилл (актин и миозин в основе);
  • данные структуры объединяются в большие группы - мышечные волокна, которые, в свою очередь, формируют непосредственно скелетные мышцы разных групп;
  • имеется множество ядер, хорошо выраженный ретикулюм и аппарат Гольджи;
  • хорошо развиты многочисленные митохондрии;
  • иннервация осуществляется под контролем соматической нервной системы, то есть осознанно;
  • утомляемость волокон высокая, однако и работоспособность тоже;
  • лабильность выше среднего уровня, быстрое восстановление после рефракции.

В теле животных и человека поперечнополосатая мускулатура имеет красный цвет. Это объясняется присутствием в волокнах миоглобина - специализированного белка. Каждый миоцит покрыт снаружи практически невидимой прозрачной оболочкой - сарколеммой.

В молодом возрасте животных и человека содержат больше плотной соединительной ткани между миоцитами. С течением времени и старением она заменяется на рыхлую и жировую, поэтому мышцы становятся дряблыми и слабыми. В целом скелетная мускулатура занимает до 75% от общей массы. Именно она составляет мясо животных, птиц, рыб, которое человек употребляет в пищу. Питательная ценность очень высокая из-за большого содержания различных белковых соединений.

Разновидностью поперечно-полосатой мускулатуры, помимо скелетной, является сердечная. Особенности ее строения выражаются в присутствии двух типов клеток: обычных миоцитов и кардиомиоцитов. Обычные имеют такое же строение, как и скелетные. Отвечают за автономное сокращение сердца и его сосудов. А вот кардиомиоциты - особые элементы. В них незначительное количество миофибрилл, а значит, актина и миозина. Это говорит о низкой способности к сокращению. Но их задача не в этом. Главная роль - выполнение функции проведения возбудимости по сердцу, осуществление ритмической автоматии.

Сердечная мышечная ткань формируется за счет многократного ветвления входящих в ее состав миоцитов и последующего объединения в общую структуру этих веточек. Еще одно отличие от поперечно-полосатой скелетной мускулатуры - в том, что сердечные клетки содержат ядра в своей центральной части. Миофибриллярные участки локализованы по периферии.

Какие органы образует?

Вся скелетная мускулатура организма - это поперечно-полосатая мышечная ткань. Таблица, отражающая места локализации данной ткани в организме, приведена ниже.

Значение для организма

Роль, которую исполняет поперечно-полосатая мускулатура, переоценить сложно. Ведь именно она отвечает за самое важное отличительное свойство растений и животных - способность к активному передвижению. Человек может совершать массу самых сложных и простых манипуляций, и все они будут зависеть от работы скелетных мышц. Многие люди занимаются тщательными тренировками своей мускулатуры, добиваются в этом большого успеха благодаря свойствам мышечных тканей.

Рассмотрим, какие еще функции выполняет поперечно-полосатая мускулатура в теле человека и животных.

  1. Отвечает за сложные мимические сокращения, выражение эмоций, внешние проявления сложных чувств.
  2. Поддерживает положение тела в пространстве.
  3. Выполняет функцию защиты органов брюшной полости (от механических воздействий).
  4. Сердечная мускулатура обеспечивает ритмические сокращения сердца.
  5. Скелетные мышцы участвуют в актах глотания, формируют голосовые связки.
  6. Регулируют движения языка.

Таким образом, можно сделать следующий вывод: мышечные ткани - важные структурные элементы любого животного организма, наделяющие его определенными уникальными способностями. Свойства и строение разных типов мускулатуры обеспечивают жизненно необходимые функции. В основе строения любой мышцы лежит миоцит - волокно, образованное из белковых нитей актина и миозина.

Мышца как орган, вспомогательные органы мышц.

Движение у позвоночных животных осуществляется мышцами, построенными из поперечно-исчерченной мышечной ткани.

Главными структурными элементами скелетной поперечно-исчерченной мышечной ткани являются скелетные миоциты, на которых располагаются камбиальные малодифференцированные клетки. Кроме того, в состав мышцы как органа входят элементы волокнистой соединительной ткани, жировая ткань, нервные волокна с окончаниями. Каждая мышца содержит кровеносные и лимфатические сосуды, формирующие в органе микроциркуляторное русло.

Мускулатура по своему строению является типичным паренхиматозным органом. Рабочей тканью или паренхимой будет сама мышечная ткань, а стромой (каркасом) будут являться соединительнотканные оболочки:

1. Эндомизий (endomysium ) – это рыхлая соединительная ткань, окружающая каждое мышечное волокно.

2. Перимизий (perimysium ) – это плотная соединительная ткань, объединяющая несколько мышечных волооко в один пучок, от толщи перимизия отходят кровеносные сосуды и нервы.

3. Эпимизий (epimysium ) – это наружная оболочка, состоящая из плотной соединительной ткани с небольшим количеством жировой ткани.

Типы мышц:

1. Одноперистые – это мышцы, у которых пучки мышечных волокон идут косо по отношению к длине мышцы.

2. Двуперистые – это мышцы, у которых пучки мышечных волокон подходят к центру сухожилия с двух противоположных сторон.

3. Многоперистые – это мышцы, у которых пучки мышечных волокон идут в разных направлениях, в результате чего сухожилие может быть расчленено на три и более пластинок.

Добавочными и вспомогательными органами мышц являются сухожилия (апоневрозы), фасции, слизистые бурсы, синовиальные влагалища, сесамовидные кости и блоки.

Сухожилие (tendo ) располагается по концам мышечного брюшка, имеет соединительнотканный остов, паренхиму сухожилия, составляет волокна плотной соединительной ткани, которые располагаются строго друг к другу.

Форма сухожилий соответствует форме мышцы.

Свойства сухожилия: малая утомляемость и большая сопротивляемость растяжению.

3 оболочки соединительнотканного остова сухожилия:

1. Эндотенон (endotenonium ) окружает само сухожильное волокно.

2. Перитенон (peritenonium ) окружает в первый сухожильный пучок.

3. Эпитенон (epitrnonium ) окружает сухожилие как футляр.

Синовиальные бурсы (bursa synovialis ) представляют собой небольшие мешочки, заполненные синовиальной жидкостью. Полости синовиальных бурс и расположенных вблизи суставов часто сообщаются между собой.

Функция: для предотвращения трения мышц, сухожилий или связок с другими органами.

По особенностям развития и топографии делятся на: постоянные и приобретенные, подышечные, подсухожильные, подсвязочные, подкожные.

Синовиальные влагалища (vagina synovialis ) по строению и назначению схожи с бурсами. Их стенка состоит из двух оболочек – синовиальной и фиброзной. Синовиальная имеет два листка. Висцеральный соединяется с сухожилием, а париетальный прилежит к фиброзной оболочке. Участок перехода париетального листка в висцеральный называется брыжейкой сухожилия (mesotendineum ). По ней к сухожилию проходят сосуды и нервы. Между висцеральным и париетальным листками располагается щелевидная полость, заполненная синовиальной жидкостью.

Фасции (fascia ) окружают отдельные мышцы (специальные фасции) или группы мышц (глубокие фасции) или все тело (поверхностные фасции). Они состоят из плотной соединительной ткани.

Сесамовидные кости (ossa sesamoidea ) представляют собой вторичные костные структуры. Они могут образовываться как внутри сухожилий, так и в стенке капсулы некоторых суставов. При этом сесамовидные кости располагаются на вершине сустава или там, где необходимо изменить направление действия силы сокращения мышцы.

Блоки (trochleae ) располагаются над выступающими частями кости там, где необходимо изменить ход мышцы или направление действия силы их сокращений. Для устранения трения они покрыты гиалиновым хрящом. В области блока, как правило, располагаются синовиальные бурсы и синовиальные влагалища.

Анатомия мышц человека, их строение и развитие, пожалуй, можно назвать той самой наиболее актуальной темой, которая вызывает максимальный общественный интерес к культуризму. Стоит ли говорить о том, что именно строение, работа и функции мышц это та тема, которой персональный тренер должен уделять особое внимание. Как и в изложении других тем, введение в курс мы начнем с детального изучения анатомии мышц, их строения, классификации, работы и функций.

Ведение здорового образа жизни, правильное питание и систематическая физическая активность способствуют развитию мускулатуры и снижению уровня жира в организме. Строение и работы мышц человека будут понятны лишь при последовательном изучении сначала скелета человека и только затем мышц. И теперь, когда из статьи мы знаем, что он, в том числе выполняет функцию каркаса для крепления мышц, настало самое время изучить, какие же основные группы мышц формируют тело человека, где они находятся, как они выглядят и какие функции выполняют.

Выше вы можете видеть, как выглядит строение мышц человека на фото (3D модель). Сначала рассмотрим мускулатуру тела мужчины с терминами, применяемыми к бодибилдингу, затем мускулатуру тела женщины. Забегая наперед, стоит заметить, что строение мышц у мужчин и женщин принципиальных отличий не имеет, мускулатура тела практически полностью сходна.

Анатомия мышц человека

Мышцами называются органы тела, которые формирует эластичная ткань, и активность которой регулируется нервными импульсами. Функции мышц – это в том числе, движение и перемещение в пространстве частей тела человека. Полноценное их функционирование непосредственно влияет на физиологическую активность множества процессов в организме. Работа мышц регулируется нервной системой. Она способствует их взаимодействию с головным и спинным мозгом, а также участвует в процессе преобразования химической энергии в механическую. Тело человека формирует порядка 640 мышц (различные методы подсчета дифференцированных групп мышц, определяют их число от 639 до 850). Ниже приведено строение мышц человека (схема) на примере мужского и женского тела.

Строение мышц мужчины, вид спереди: 1 – трапеции; 2 – передняя зубчатая мышца; 3 – наружные косые мышцы живота; 4 – прямая мышца живота; 5 – портняжная мышца; 6 – гребенчатая мышца; 7 – длинная приводящая мышца бедра; 8 – тонкая мышца; 9 – напрягатель широкой фасции; 10 – большая грудная мышца; 11 – малая грудная мышца; 12 – передняя головка плеча; 13 – средняя головка плеча; 14 – брахиалис; 15 – пронатор; 16 – длинная головка бицепса; 17 – короткая головка бицепса; 18 – длинная ладонная мышца; 19 – экстензорная мышца запястья; 20 – длинная приводящая мышца запястья; 21 – длинный сгибатель; 22 – лучевой сгибатель запястья; 23 – плечелучевая мышца; 24 – латеральная мышца бедра; 25 – медиальная мышца бедра; 26 – прямая мышца бедра; 27 – длинная малоберцовая мышца; 28 – длинный разгибатель пальцев; 29 – передняя большеберцовая мышца; 30 – камбаловидная мышца; 31 – икроножная мышца

Строение мышц мужчины, вид сзади: 1 – задняя головка плеча; 2 – малая круглая мышца; 3 – большая круглая мышца; 4 – подостная мышца; 5 – ромбовидная мышца; 6 – экстензорная мышца запястья; 7 – плечелучевая мышца; 8 – локтевой сгибатель запястья; 9 – трапециевидная мышца; 10 – прямая остистая мышца; 11 – широчайшая мышца; 12 – грудопоясничная фасция; 13 – бицепс бедра; 14 – большая приводящая мышца бедра; 15 – полусухожильная мышца; 16 – тонкая мышца; 17 – полуперепончатая мышца; 18 – икроножная мышца; 19 – камбаловидная мышца; 20 – длинная малоберцовая мышца; 21 – мышца отводящая большой палец стопы; 22 – длинная головка трицепса; 23 – латеральная головка трицепса; 24 – медиальная головка трицепса; 25 – наружные косые мышцы живота; 26 – средняя ягодичная мышца; 27 – большая ягодичная мышца

Строение мышц женщины, вид спереди: 1 – лопаточно подъязычная мышца; 2 – грудинно-подъязычная мышца; 3 – грудинно-ключично-сосцевидная мышца; 4 – трапециевидная мышца; 5 – малая грудная мышца (не видна); 6 – большая грудная мышца; 7 – зубчатая мышца; 8 – прямая мышца живота; 9 – наружная косая мышца живота; 10 – гребенчатая мышца; 11 – портняжная мышца; 12 – длинная приводящая мышца бедра; 13 – напрягатель широкой фасции; 14 – тонкая мышца бедра; 15 – прямая мышца бедра; 16 – промежуточная широкая мышца бедра (не видна); 17 – латеральная широкая мышца бедра; 18 – медиальная широкая мышца бедра; 19 – икроножная мышца; 20 – передняя большеберцовая мышца; 21 – длинный разгибатель пальцев стопы; 22 – длинная большеберцовая мышца; 23 – камбаловидная мышца; 24 – передний пучок дельт; 25 – средний пучок дельт; 26 – плечевая мышца брахиалис; 27 – длинный пучок бицепса; 28 – короткий пучок бицепса; 29 – плечелучевая мышца; 30 – лучевой разгибатель запястья; 31 – круглый пронатор; 32 – лучевой сгибатель запястья; 33 – длинная ладонная мышца; 34 – локтевой сгибатель запястья

Строение мышц женщины, вид сзади: 1 – задний пучок дельт; 2 – длинный пучок трицепса; 3 – латеральный пучок трицепса; 4 – медиальный пучок трицепса; 5 – локтевой разгибатель запястья; 6 – наружная косая мышца живота; 7 – разгибатель пальцев; 8 – широкая фасция; 9 – бицепс бедра; 10 – полусухожильная мышца; 11 – тонкая мышца бедра; 12 – полуперепончатая мышца; 13 – икроножная мышца; 14 – камбаловидная мышца; 15 – короткая малоберцовая мышца; 16 – длинный сгибатель большого пальца; 17 – малая круглая мышца; 18 – большая круглая мышца; 19 – подостная мышца; 20 – трапециевидная мышца; 21 – ромбовидная мышца; 22 – широчайшая мышца; 23 – разгибатели позвоночника; 24 – грудопоясничная фасция; 25 – малая ягодичная мышца; 26 – большая ягодичная мышца

Мышцы отличаются довольно разнообразной формой. Мышцы, имеющие общее сухожилие, но обладающие двумя или более головками, называются двухглавыми (бицепс), трехглавыми (трицепс) или четырехглавыми (квадрицепс). Функции мышц так же довольно разнообразны, это сгибатели, разгибатели, отводящие, приводящие, вращатели (кнутри и кнаружи), поднимающие, опускающие, выпрямляющие и другие.

Типы мышечной ткани

Характерные черты строения позволяют классифицировать мышцы человека по трем типам: скелетные, гладкие и сердечную.

Типы мышечной ткани человека: I- скелетные мышцы; II- гладкие мышцы; III- сердечная мышца

  • Скелетные мышцы. Сокращение данного типа мышц полностью контролируется человеком. Объединенные со скелетом человека, они образуют опорно-двигательный аппарат. Скелетными данный тип мышц называют именно по причине их крепления к костям скелета.
  • Гладкие мышцы. Данный тип ткани присутствует в составе клеток внутренних органов, кожи и кровеносных сосудов. Строение гладких мышц человека подразумевает их нахождение по большей части в стенках полых внутренних органов, таких как пищевод или мочевой пузырь. Также они играют важную роль в процессах, не контролируемых нашим сознанием, например в моторике кишечника.
  • Сердечная мышца (миокард). Работу данной мышцы контролирует вегетативная нервная система. Ее сокращения не контролируются сознанием человека.

Поскольку сокращение гладкой и сердечной мышечной ткани не контролируется сознанием человека, акцент в данной статье мы сосредоточим именно на скелетных мышцах и подробном их описании.

Строение мышц

Мышечное волокно является структурным элементом мышц. По отдельности, каждое из них представляет собой не только клеточную, но и физиологическую единицу, которая способна сокращаться. Мышечное волокно имеет вид многоядерной клетки, диаметр волокна находится в диапазоне от 10 до 100 мкм. Эта многоядерная клетка находится в оболочке, называемой сарколеммой, которая в свою очередь наполнена саркоплазмой, а уже в саркоплазме находятся миофибриллы.

Миофибрилла представляет собой нитевидное образование, которое состоит из саркомеров. В толщину миофибриллы, как правило, составляют менее 1 мкм. С учетом количества миофибрилл, обычно различают белые (они же – быстрые) и красные (они же – медленные) мышечные волокна. Белые волокна содержат больше миофибрилл, но меньше саркоплазмы. Именно по этой причине они сокращаются быстрее. Красные волокна содержат много миоглобина, потому и получили такое название.

Внутреннее строение мышцы человека: 1 – кость; 2 – сухожилие; 3 – мышечная фасция; 4 – скелетная мышца; 5 – фиброзная оболочка скелетной мышцы; 6 – соединительно-тканная оболочка; 7 – артерии, вены, нервы; 8 – пучок; 9 – соединительная ткань; 10 – мышечное волокно; 11 – миофибрилла

Работа мышц характерна тем, что способность быстрее и сильнее сокращаться, свойственна именно белым волокнам. Они могут развивать усилие и скорость сокращения в 3-5 раз выше, чем медленные волокна. Физическая активность анаэробного типа (работа с отягощениями) выполняется преимущественно быстрыми мышечными волокнами. Длительная аэробная физическая активность (бег, плавание, велосипед) выполняется преимущественно медленными мышечными волокнами.

Медленные волокна более устойчивы к утомлению, в то же время, быстрые волокна к продолжительной физической активности не приспособлены. Что касается соотношения быстрых и медленных мышечных волокон в мышцах человека, то их количество примерно одинаково. У большей части обоих полов, порядка 45-50% мышц конечностей составляют медленные мышечные волокна. Сколько ни будь значительных половых различий в соотношении различных типов мышечных волокон у мужчин и женщин нет. Их соотношение формируется в начале жизненного цикла человека, иными словами является генетически запрограммированным и до самой старости практически не меняется.

Саркомеры (составные компоненты миофибрилл) формируются толстыми миозиновыми нитями и тонкими актиновыми нитями. Остановимся на них более детально.

Актин – белок, являющийся структурным элементом цитоскелета клеток и обладающий способностью сокращаться. Состоит из 375 остатков аминокислот, и составляет порядка 15% мышечного белка.

Миозин – главный компонент миофибрилл – сократительных волокон мышц, где его содержание может составлять порядка 65%. Молекулы сформированы двумя полипептидными цепочками, каждая из которых содержит около 2000 аминокислот. Каждая из таких цепочек имеет на конце так называемую головку, которая включает две маленькие цепочки, состоящие из 150-190 аминокислот.

Актомиозин – комплекс белков, сформированный из актина и миозина.

ФАКТ. По большей части, мышцы состоят из воды, белков и прочих компонентов: гликогена, липидов, азотсодержащих веществ, солей и т. д. Содержание воды колеблется в диапазоне 72-80% от общей массы мышц. Скелетная мышца состоит из большого количества волокон, и что характерно, чем их больше, тем мышца сильнее.

Классификация мышц

Мышечная система человека характерна разнообразием формы мышц, которые в свою очередь делятся на простые и сложные. Простые: веретенообразные, прямые, длинные, короткие, широкие. К сложным можно отнести многоглавые мышцы. Как мы уже говорили, если у мышц общее сухожилие, а головок две или больше, то их называют двухглавыми (бицепс), трехглавыми (трицепс) или четырехглавыми (квадрицепс), так же к многоглавым относятся многосухожильные и двубрюшные мышцы. К сложным относятся и следующие типы мышц с определенной геометрической формой: квадратные, дельтовидные, камбаловидные, пирамидальные, круглые, зубчатые, треугольные, ромбовидные, камбаловидные.

Основные функции мышц это сгибание, разгибание, отведение, приведение, супинация, пронация, поднятие, опускание, выпрямление и не только. Под термином супинация подразумевается вращение кнаружи, а под термином пронация – вращение кнутри.

По направлению волокон мышцы делят на: прямые, поперечные, круговые, косые, одноперистые, двуперистые, многоперистые, полусухожильные и полуперепончатые.

По отношению к суставам , учитывая число суставов, через которые они перекидываются: односуставные, двусуставные и многосуставные.

Работа мышц

В процессе сокращения нити актина проникают глубоко в промежутки между нитями миозина, причём длина обеих структур не меняется, а лишь сокращается общая длина актомиозинового комплекса – такой способ сокращения мышц называется скользящим. Скольжение актиновых нитей вдоль миозиновых нуждается в энергии, а энергия, необходимая для сокращения мышц, освобождается в результате взаимодействия актомиозина с АТФ (аденозинтрифосфат). Кроме АТФ важную роль в сокращении мышц играет вода, а также ионы кальция и магния.

Как уже говорилось, работа мышц полностью контролируется нервной системой. Это говорит о том, что их работой (сокращением и расслаблением) можно управлять сознательно. Для нормального и полноценного функционирования организма и передвижения его в пространстве, мышцы работают группами. Большая часть мышечных групп тела человека работает в парах, и выполняют противоположные функции. Выглядит это таким образом, что когда мышца «агонист» сокращается, мышца «антагонист» растягивается. То же справедливо и наоборот.

  • Агонист – мышца, выполняющая определенное движение.
  • Антагонист – мышца, выполняющая противоположное движение.

Мышцы обладают такими свойствами: эластичность, растяжение, сокращение. Эластичность и растяжение дают мышцам возможность меняться в размере и возвращаться к исходному состоянию, третье качество дает возможность создать усилие на ее концах и приводить к укорачиванию.

Нервное стимулирование может вызвать следующие типы мышечного сокращения: концентрическое, эксцентрическое и изометрическое. Концентрическое сокращение возникает в процессе преодоления нагрузки при выполнении заданного движения (подъем вверх при подтягиваниях на перекладине). Эксцентрическое сокращение возникает в процессе замедления движений в суставах (опускание вниз при подтягиваниях на перекладине). Изометрическое сокращение возникает в момент, когда усилие создаваемое мышцами равно нагрузке оказываемой на них (удержание корпуса в висе на перекладине).

Функции мышц

Зная, как называется и где находится та или иная мышца или группа мышц мы можем перейти к изучению блока – функции мышц человека. Ниже в таблице мы рассмотрим самые основные мышцы, которые тренируются в зале. Как правило, тренингу подвергаются шесть основных мышечных групп: грудь, спина, ноги, плечи, руки и пресс.

ФАКТ. Самая большая и самая сильная мышечная группа в теле человека это ноги. Самая большая мышца – ягодичная. Самая сильная – икроножная, она может удерживать вес до 150 кг.

Заключение

В данной статье мы рассмотрели такую сложную и объемную тему, как строение и функции мышц человека. Говоря о мышцах, мы конечно же подразумеваем и мышечные волокна, а вовлечение в работу мышечных волокон предполагает взаимодействие с ними нервной системы, поскольку выполнению мышечной активности предшествует иннервация двигательных нейронов. Именно по этой причине, в нашей следующей статье мы перейдем к рассмотрению строения и функций нервной системы.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!