Упражнения. Питание. Диеты. Тренировки. Спорт

Формула полной вероятности. Формула Байеса. Формула полной вероятности и формулы байеса

ИНФОРМАТИКА, ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И УПРАВЛЕНИЕ INFORMATION TECHNOLOGY, COMPUTER SCIENCE, AND MANAGEMENT

О применимости формулы Байеса

DOI 10.12737/16076

А. И. Долгов **

1Акционерное общество «Конструкторское бюро по радиоконтролю систем управления, навигации и связи», г. Ростов-на-Дону, Российская Федерация

On applicability of Bayes" formula*** A. I. Dolgov1**

1«Design bureau on monitoring of control, navigation and communication systems» JSC, Rostov-on-Don, Russian Federation

Предметом данного исследования является формула Байеса. Цель настоящей работы - анализ и расширение области применения формулы. Первоочередной задачей представляется изучение публикаций, посвященных указанной проблеме, позволившее выявить недостатки применения формулы Байе-са, приводящие к некорректным результатам. Следующая задача - построение модификаций формулы Байеса, обеспечивающих учет различных одиночных свидетельств с получением корректных результатов. И, наконец, на примере конкретных исходных данных сравниваются некорректные результаты, получаемые с применением формулы Байеса, и корректные результаты, вычисляемые с помощью предлагаемых модификаций. При проведении исследования использованы два метода. Во-первых, проведен анализ принципов построения известных выражений, применяемых для записи формулы Байеса и ее модификаций. Во-вторых, выполнена сравнительная оценка результатов (в том числе количественная). Предлагаемые модификации обеспечивают более широкое применение формулы Байеса в теории и на практике, в том числе при решении прикладных задач.

Ключевые слова: условные вероятности, несовместные гипотезы, совместимые и несовместимые свидетельства, нормирование.

Bayes" formula is the research subject. The work objective is to analyze the formula application and widen the scope of its applicability. The first-priority problem includes the identification of the Bayes" formula disadvantages based on the study of the relevant publications leading to incorrect results. The next task is to construct the Bayes" formula modifications to provide an accounting of various single indications to obtain correct results. And finally, the incorrect results obtained with the application of Bayes" formula are compared to the correct results calculated with the use of the proposed formula modifications by the example of the specific initial data. Two methods are used in studies. First, the analysis of the principles of constructing the known expressions used to record the Bayesian formula and its modifications is conducted. Secondly, a comparative evaluation of the results (including the quantitative one) is performed. The proposed modifications provide a wider application of Bayes" formula both in theory and practice including the solution of the applied problems.

Keywords: conditional probabilities, inconsistent hypotheses, compatible and incompatible indications, normalizing.

Введение. Формула Байеса находит все более широкое применение в теории и практике , в том числе при решении прикладных задач с помощью вычислительной техники . Использование взаимно независимых вычислительных процедур позволяет особенно эффективно применять данную формулу при решении задач на многопроцессорных вычислительных системах , так как в этом случае параллельная реализация выполняется на уровне общей схемы, и при добавлении очередного алгоритма или класса задач нет необходимости повторно проводить работу по распараллеливанию.

Предметом данного исследования является применимость формулы Байеса для сравнительной оценки апостериорных условных вероятностей несовместных гипотез при различных одиночных свидетельствах. Как показывает анализ, в таких случаях сравниваются нормированные вероятности несовместных комбинированных событий, принадле-

S X <и ч и

IS eö И IS X X <и H

"Работа выполнена в рамках инициативной НИР.

**E-mail: [email protected]

""The research is done within the frame of the independent R&D.

жащих разным полным группам событий . При этом сравниваемые результаты оказываются неадекватными реальным статистическим данным. Это обусловлено следующими факторами:

Используется некорректное нормирование ;

Не принимается во внимание наличие или отсутствие пересечений учитываемых свидетельств.

С целью устранения обнаруженных недостатков выявляются случаи применимости формулы Байеса. Если же указанная формула неприменима, решается задача построения ее модификации, обеспечивающей учет различных одиночных свидетельств с получением корректных результатов. На примере конкретных исходных данных выполнена сравнительная оценка результатов:

Некорректных - получаемых с использованием формулы Байеса;

Корректных - вычисляемых с помощью предлагаемой модификации.

Исходные положения. В основу излагаемых далее утверждений положим принцип сохранения отношений вероятностей: «Корректная обработка вероятностей событий осуществима лишь при нормировании с применением одного общего нормирующего делителя, обеспечивающего равенство отношений нормированных вероятностей отношениям соответствующих им нормируемых вероятностей» . Данный принцип представляет субъективную основу теории вероятностей, однако не отражается должным образом в современной учебной и научно-технической литературе.

При нарушении указанного принципа искажаются сведения о степени возможности рассматриваемых событий. Получаемые на основе искаженных сведений результаты и принимаемые решения оказываются неадекватными реальным статистическим данным.

В предлагаемой статье будут использованы следующие понятия:

Элементарное событие - событие, не делимое на элементы;

Комбинированное событие - событие, представляющее то или иное сочетание элементарных событий;

Совместимые события - события, которые в одних случаях сравнительной оценки их вероятностей могут быть несовместными, а других случаях совместными;

Несовместимые события - события, которые во всех случаях являются несовместными.

Согласно теореме умножения вероятностей, вероятность Р (И ^Е) произведения элементарных событий И ^ и

Е вычисляется в виде произведения вероятностей Р(Ик Е) = Р(Е)Р(И^Е) . В связи с этим формула Байеса часто

записывается в виде Р(Ик\Е) =--- , описывающем определение апостериорных условных вероятностей

Р(И^Е) гипотез Ик (к = 1,...п) на основе нормирования априорных вероятностей Р(И^Е) учитываемых комбинированных несовместимых событий И к Е. Каждое из таких событий представляет произведение, сомножителями которого являются одна из рассматриваемых гипотез и одно учитываемое свидетельство. При этом все рассматривае-

мые события ИкЕ (к = 1,...п) образуют полную группу иИкЕ несовместимых комбинированных событий, в связи

с чем их вероятности Р(Ик Е) должны быть нормированы с учетом формулы полной вероятности , согласно кото-

рой Р(Е) = 2 Р(Ик)Р(Е\Ик). Поэтому формула Байеса чаще всего записывается в наиболее употребляемом виде:

Р(Ик) Р(ЕИк)

Р(Ик\Е) = -. (1)

^ кацией формулы Байеса.

й Анализ особенностей построения формулы Байеса, нацеленного на решение прикладных задач, а также примеры

«и ее практического применения позволяют сделать важный вывод относительно выбора полной группы сравниваемых по степени возможности комбинированных событий (каждое из которых является произведением двух элементарных событий - одной из гипотез и учитываемого свидетельства). Такой выбор осуществляется субъективно лицом, принимающим решение, на основе объективных исходных данных, присущих типовым условиям обстановки: виды и количество оцениваемых гипотез и конкретно учитываемое свидетельство.

Несравниваемые вероятности гипотез при одиночных несовместимых свидетельствах. Формула Байеса традиционно применяется в случае определения не сравниваемых по степени возможности апостериорных условных веро-

ятностей гипотез Н^ при одиночных несовместимых свидетельствах, каждое из которых может «появиться

только в комбинации с какой-либо из этих гипотез» . При этом выбираются полные группы и НкЕ, комбиниро-

ванных событий в виде произведений, сомножителями которых являются одно из свидетельств ц. (1=1,...,т) и одна

из п рассматриваемых гипотез.

Формула Байеса применяется для сравнительной оценки вероятностей комбинированных событий каждой такой полной группы, отличающейся от других полных групп не только учитываемым свидетельством е, но и в общем случае видами гипотез Н ^ и (или) их количеством п (см., например, )

РНкЫ = Р(Нк) Р(еН)

% Р(Нк) Р(Ег\Нк) к = 1

В частном случае при п = 2

РНк\Е,~ Р(Нк) Р(ЕН)

% Р(Нк) Р(Е,\Н к) к = 1

и получаемые результаты являются правильными, ввиду соблюдения принципа сохранения отношений вероятностей:

Р(Н1Е,) _ Р(Н 1)Р(Е,\Н1) / Р(Н2) Р(Е,\Н2) = Р(Н 1) Р(Е,\Н1)

Р(Н 2= % РШ1!) РЕ,\Н0 % ^) РЕ,\Н) " Р(Н 2> 2>"

Субъективность выбора полной группы сравниваемых по степени возможности комбинированных событий (с

теми или иными изменяемыми элементарными событиями) позволяет выбрать полную группу событий и Нк Е ■ с

отрицанием элементарного события Е ■ () и записать формулу Байеса (1 = 1,.. .,т) так:

Р(Нк\Е) -=-РНШ±.

% Р(Нк)Р(Е,Нк)

Такая формула также применима и дает возможность получить правильные результаты, если вычисляемые к

нормированные вероятности сравниваются при различных рассматриваемых гипотезах, но не при различных свиде- ^

тельствах. ¡^

Сравниваемые вероятности гипотез при одиночных несовместимых свидетельствах. Судя по известным публи- ^

няется для сравнительной оценки апостериорных условных вероятностей гипотез при различных одиночных свиде- ^

тельствах. При этом не уделяется внимание следующему факту. В указанных случаях сравниваются нормируемые ^ вероятности несовместных (несовместимых) комбинированных событий, принадлежащих разным полным группам н событий. Однако в данном случае формула Байеса неприменима, так как сравниваются не входящие в одну полную § группу комбинированные события, нормирование вероятностей которых осуществляется с использованием разных л нормирующих делителей. Нормированные вероятности несовместных (несовместимых) комбинированных событий можно сравнивать только в том случае, если они принадлежат одной и той же полной группе событий и нормированы ¡3 с использованием общего делителя, равного сумме вероятностей всех нормируемых событий, входящих в полную §

В общем случае в качестве несовместимых свидетельств могут рассматриваться:

Два свидетельства (например, свидетельство и его отрицание); ^

Три свидетельства (к примеру, в игровой ситуации выигрыш, проигрыш и ничья); ^

Четыре свидетельства (в частности, в спорте выигрыш, проигрыш, ничья и переигровка) и т. д. ^

Рассмотрим довольно простой пример (соответствующий примеру, приведенному в ) применения формулы ^ Байеса для определения апостериорных условных вероятностей гипотезы Н ^ при двух несовместимых событиях в

виде свидетельства Л]- и его отрицания Л]

Р(Н,к) - ^ . ^ Р(А^к» , (2)

] Е Р(Нк> Р(А]\вк> к - 1

■ _ Р(НкА ]) Р(Нк> Р(А ]\нк>

Р(Н,\А,) ----к-]-. (3)

V к\Л]> Р(А > п

] Е Р(Нк) Р(А]\Нк) к -1

В случаях (2) и (3) субъективно выбранными полными группами сравниваемых по степени возможности ком-

бинированных событий являются соответственно множества и Н к А и и Н к А. Это тот случай, когда формула

к-1 к ] к-1 к ]

Байеса неприменима, т. к. нарушен принцип сохранения отношений вероятностей - не соблюдается равенство отношений нормированных вероятностей отношениям соответствующих им нормируемых вероятностей:

Р(Н к А]] Р(Нк) Р(А]\Нк) / Р(Нк) Р(А]\Нк) Р(Нк) Р(А] Нк)

Р(Нк Е Р(Нк) Р(А]\Нк)/ Е Р(Нк) Р(А]\Нк) Р(Нк) Р(А] Нк)

к - 1 /к - 1 Согласно принципу сохранения отношений вероятностей, корректная обработка вероятностей событий осуществима лишь при нормировании с применением одного общего нормирующего делителя, равного сумме всех сравниваемых нормируемых выражений. Поэтому

Е Р(Нк)Р(А]\Нк) + Е Р(Нк)Р(А]\Нк) - Е Р(Нк)[Р(А]\Нк) + Р(Нк) Р(А]\Нк)] - ЕР(Нк) - 1. к -1 к -1 к -1 к -1

Таким образом, обнаруживается тот факт, что существуют разновидности формулы Байеса, отличающиеся от

известных отсутствием нормирующего делителя:

А,) - Р(Н) Р(А]\Нк), Р(Нк А,) - Р(Н) Р(А, Н к). (4)

J к I ■> к

При этом соблюдается равенство отношений нормированных вероятностей отношениям соответствующих им нормируемых вероятностей:

т^А^ Р(Нк) Р(А]\Нк)

А,) Р(Н к) Р(А,Нк)

На основе субъективного выбора нетрадиционно записываемых полных групп несовместных комбинированных событий можно увеличить количество модификаций формулы Байеса, включающих свидетельства, а также то или иное количество их отрицаний. Например, наиболее полной группе комбинированных событий

и и Нк /"./ ^ и и Нк Ё\ соответствует (с учетом отсутствия нормирующего делителя) модификация формула; =1 А"=1 ; =1 лы Байеса

Р(Нк\~) - Р(Н к) ПЁ^^^

где элементарное событие в виде свидетельства Е\ е II II / "/ является одним из элементов указанного множе-

о При отсутствии отрицаний свидетельств, то есть при Ё\ = // е и /"./,

^ Р(Н\Е) Р(Нк) Р(Е,\Нк)

Е Р(Нк) Р(Е\Нк) к - 1

Таким образом, модификация формулы Байеса, предназначенная для определения сравниваемых по степени возможности условных вероятностей гипотез при одиночных несовместимых свидетельствах выглядит следующим образом. В числителе содержится нормируемая вероятность одного из комбинированных несовместных событий, об-110 разующих полную группу, выраженную в виде произведения априорных вероятностей, а в знаменателе - сумма всех

нормируемых вероятностей. При этом соблюдается принцип сохранения отношений вероятностей - и получаемый результат является правильным.

Вероятности гипотез при одиночных совместимых свидетельствах. Формулы Байеса традиционно применяются для определения сравниваемых по степени возможности апостериорных условных вероятностей гипотез Нк (к = 1,...,п) при одном из нескольких рассматриваемых совместимых свидетельств ЕЛ (1 = 1,...,т). В частности (см.,

например, и ), при определении апостериорных условных вероятностей Р(Н 1Е^) и Р(Н 1 Е2) при каждом из двух совместимых свидетельств Е1 и Е2 употребляются формулы вида:

P(H 1) PE\H1) P(Hj) P(E2Hj) P(H J E1) = --1-и P(H J E 2) =--1-. (5)

I P(Hk) PE\Hk) I P(Hk) P(E2 Hk)

k = 1 k = 1 Необходимо учесть, что это еще один случай, когда формула Байеса неприменима. Причем в данном случае должны быть устранены два недостатка:

Проиллюстрированное нормирование вероятностей комбинированных событий некорректно, ввиду принадлежности разным полным группам рассматриваемых событий ;

В символических записях комбинированных событий HkEx и HkE2 не находит отражения тот факт, что учитываемые свидетельства E х и E 2 являются совместимыми.

Для устранения последнего недостатка может быть использована более развернутая запись комбинированных событий с учетом того, что совместимые свидетельства E1 и E2 в одних случаях могут быть несовместными, а в других совместными:

HkE1 = HkE1 E2 и HkE2 = HkE 1E2+HkE1 E2, где E1 и E 2 являются свидетельствами, противоположными E1 и E 2.

Очевидно, что в таких случаях произведение событий Hk E1E2 учитывается дважды. Кроме того, оно может быть учтено еще раз отдельно, однако этого не происходит. Дело в том, что в рассматриваемой ситуации на оцениваемую обстановку влияют три вероятных несовместимых комбинированных события: HkE1E2, HkE 1E2 и

Hk E1E2. При этом для лица, принимающего решение, представляет интерес оценка по степени возможности лишь

двух несовместимых комбинированных событий: HkE1 E2 и HkE 1E2, что соответствует рассмотрению только g

одиночных свидетельств. ¡Ц

Таким образом, при построении модификации формулы Байеса для определения апостериорных условных ве- ¡^

роятностей гипотез при одиночных совместимых свидетельствах необходимо исходить из следующего. Лицо, прини- ^

мающее решение, интересует, какое именно элементарное событие, представленное тем или иным свидетельством из

числа рассматриваемых, реально произошло в конкретных условиях. Если происходит другое элементарное событие в К

виде одиночного свидетельства, требуется пересмотр решения, обусловленного результатами сравнительной оценки н

апостериорных условных вероятностей гипотез с непременным учетом других условий, влияющих на реальную об- щ

становку. 3

Введем следующее обозначение: HkE- для одного (и только одного) несовместимого комбинированного со- ^

бытия, состоящего в том, что из m > 1 рассматриваемых элементарных событий Ei (i = 1,...,m) совместно с гипотезой «

Hk произошло одно элементарное событие Ex и не произошли другие элементарные события. се"

В наиболее простом случае рассматриваются два одиночных несовместимых свидетельства. Если подтвер-

ждается одно из них, условная вероятность свидетельства в общем виде выражается формулой л

P(Hk E-) = P(Ei\Hk) -P(EjE^Hk) = P(Ei\Hk) -P(M^Hk)P(M^Hk) , i = 1, -2 (6) g

В справедливости формулы можно наглядно убедиться (рис. 1).

Рис. 1. Геометрическая интерпретация вычисления Р(Нк Е-) при / = 1,...,2 При условно независимых свидетельствах

Р(К1К2\Нк) = р(Е\Нк)Р(Е2\Нк),

поэтому с учетом (6)

Р(Нк Е-) = РЕ Нк) - Р(Е1 Нк) Р(Е21Нк) , = 1,.,2. (7)

Аналогично вероятность Р(НкЕ-) одного из трех (/ = 1,...,3) несовместимых событий НкЕ^ выражается формулой

Например, при i = 1:

p(HkEl) = P(Ei\Hk)-[ S P(Ei\Hk)P(Ej\Hk) ] + P(EiE2E3Hk)

p(HkE-) = P(E7|Hk)- P(E]E^Hk)- P(E7EjHk) + P(E]E2E3\Hk)

Справедливость данной формулы наглядно подтверждает геометрическая интерпретация, представленная на

Рис. 2. Геометрическая интерпретация вычисления Р(Нк Е-) при / = 1,...,3

Методом математической индукции можно доказать общую формулу для вероятности Р(Нк Е-) при любом количестве свидетельств е, 0=1,...,т):

Р(НкЕ-) = Р(Е,Нк)- т РЕ\Нк) Р(Е]\Нк) + 1 Р(Е\Нк) Р(Е]\Нк) Р(Е^Нк) +■■■ + (-1)

] = 1(] * 0 ],1 * 1

Используя теорему умножения вероятностей, запишем условную вероятность Р(НкЕ~-) в двух формах:

^ из которых следует, что

P(Hk E -) = P(H k) P(E-|Hk) = P(E-) P(Hk

E-)= P(HkE-) "" P(E-)

С использованием формулы полной вероятности P(Ei) = S P(H£) P(Ei Hk) получается, что

Е-) = Р(НкЕТ)

2 Р(НкЕ-) к = 1

Подставив в полученную формулу выражения для Р(НкЕ-) в виде правой части (8), получим окончательный вид формулы для определения апостериорных условных вероятностей гипотез Н^ (к = 1,.. .,п) при одном из нескольких рассматриваемых несовместимых одиночных свидетельств: (Е ^ \Нк)

Р(Нк)[Р(Е,\Нк) - 2 Р(Е,\Нк) Р(Ер к) +...+ (-1)т-1 Р(П Р(Ерк)] Р(Н, Е~) =-] = 1(] * ■----(9)

к 1 п т т т

2 Р(Н к) 2 [Р(Е,\Н к) - 2 Р(ЕгНк) Р(Е^Нк) + ...+ (-1)т-1 Р(П Р (Ер к)]

к=1 , = 1 } = 1(} *,) ■! =1

Сравнительные оценки. Рассматриваются довольно простые, но наглядные примеры, ограничивающиеся анализом вычисляемых апостериорных условных вероятностей одной из двух гипотез при двух одиночных свидетельствах. 1. Вероятности гипотез при несовместимых одиночных свидетельствах. Сравним результаты, получаемые с применением формул Байеса (2) и (3), на примере двух свидетельств Л. = Л и Л. = Л при исходных данных:

Р(Н1 = 0,7; Р(Н2) = 0,3; Р(Л| Н^ = 0,1; Р(Л\н 1) = 0,9; Р(Л\Н2) = 0,6; Р(Л\Н2) = 0,4. В рассматриваемых примерах с гипотезой Н1 традиционные формулы (2) и (3) приводят к следующим результатам:

Р(Н.) Р(А\Но 0 07

Р(Н, Л) =-- 11 = - = 0,28,

2 Р(Н к) Р(А\Нк) к = 1

Р(Н Л Р(А\Н 1) 0 63

Р(Н, Л) =-- 11 = - = 0,84,

2 Р(Нк) Р(А\Нк) к = 1

ормирующих делит Р(Н 1 Л) = Р(Н^ Р(Л\Нр = 0,07; Р(Н^ А) = Р(Н1) Р(л|Н^ = 0,63. 1ения предлагаемых формул отно:

Р<Н)Р(АНА-Р(А|Н1) _ 0,07

а при предлагаемых формулах (4), не имеющих нормирующих делителей: «и

Таким образом, в случае применения предлагаемых формул отношение нормируемых вероятностей равно от- й ношению нормированных вероятностей: К

гт ж Р(Н 1) Р(А\Н 1) А11 |

При использовании известных формул при таком же отношении -;-=-= 0,11 нормируемых веро- н

Р(Н 1) Р(А\Н 1) «§

ятностей, указанных в числителях, отношение получаемых нормированных вероятностей: 2

Р(Н 1) Р(А\Н 1) Р(А\Н 1) 0,63

Р(Н1 Л) = 0,28 Р(Н 1 Л) = 0,84

То есть принцип сохранения отношений вероятностей не соблюдается, и получаются неверные результаты. При этом £

в случае применения известных формул значение относительного отклонения отношения (11) апостериорных услов- и ных вероятностей гипотез от корректных результатов (10) оказывается весьма существенным, так как составляет

°,33 - °,П х 100 = 242%.. I

2. Вероятности гипотез при совместимых одиночных свидетельствах. Сравним результаты, получаемые с приме- д нением формул Байеса (5) и построенной корректной модификации (9), используя следующие исходные данные: ^

Р(Н1 = 0,7; Р(Н2) = 0,3; Р(Е1Н1) = 0,4; Р(Е2Н1) = 0,8; Р(Е1\Н2) = 0,7; Р(Е^Н2) = 0,2. 113

В рассматриваемых примерах с гипотезой H 2 в случае использования традиционных формул (5):

P(H 2) P(E1 H 2) Q, 21

P(H 2 E1) =-2-!-2- = - = Q,429,

I p(Hk) p(El Hk) k = 1

P(H 2) P(E 2 H 2) Q,Q6

P(H 2 E 2) =-2-- = - = 0,097.

I P(Hk) P(E 2 Hk) k = 1

В случае же применения предлагаемой формулы (9) с учетом (7) P(H

P(H2) 0,168

E.) ----- 0,291,

Z P(Hk) Z "

P(H2) 0,018

E0) ----- 0,031.

Z P(Hk) Z k - 1 i - 1

При использовании предлагаемых корректных формул, ввиду одинаковых знаменателей, отношение P(H2) -

Нормируемых вероятностей, указываемых в числителях, равно отношению

P(H2)

нормированных вероятностей:

То есть принцип сохранения отношений вероятностей соблюдается.

Однако в случае применения известных формул при отношении указанных в числителях нормируемых вероятностей

Р(Н 2) Р(Е1\Н 2) _ 0,21 _3 5 Р(Н 2)Р(Е 2 Н 2) 0,06 ,

отношение нормированных вероятностей:

Р(Н 2 = 0.429 = 4,423. (13)

Р(Н 2 \е2) 0,097

То есть принцип сохранения отношений вероятностей, как и прежде, не соблюдается. При этом в случае применения известных формул значение относительного отклонения отношения (13) апостериорных условных вероятностей гипотез от корректных результатов (12) также оказывается весьма существенным:

9,387 4,423 х 100 = 52,9%.

Заключение. Анализ построения конкретных формульных соотношений, реализующих формулу Байеса и ее модификации, предлагаемые для решения практических задач, позволяют утверждать следующее. Полная группа сравнивае-2 мых по степени возможности комбинированных событий может выбираться субъективно лицом, принимающим решение. Данный выбор основывается на учитываемых объективных исходных данных, характерных для типовой об-й становки (конкретные виды и количество элементарных событий - оцениваемых гипотез и свидетельств). Представ--о ляет практический интерес субъективный выбор других вариантов полной группы сравниваемых по степени возмож-

ности комбинированных событий - таким образом обеспечивается существенное разнообразие формульных соотношений при построении нетрадиционных вариантов модификаций формулы Байеса. На этом, в свою очередь, может ^ основываться совершенствование математического обеспечения программной реализации, а также расширение области применения новых формульных соотношений для решения прикладных задач.

Библиографический список

1. Gnedenko, B. V. An elementary introduction to the theory of probability / B. V. Gnedenko, A. Ya. Khinchin. - 114 New York: Dover Publications, 1962. - 144 р.

2. Вентцель, Е. С. Теория вероятностей / Е. С. Вентцель. - 10-е изд., стер. - Москва: Высшая школа, 2006. - 575 с.

3. Андронов. А. М., Теория вероятностей и математическая статистика / А. М. Андронов, Е. А. Копытов, Л. Я. Гринглаз. - Санкт-Петербург: Питер, 2004. - 481 с.

4. Змитрович, А. И. Интеллектуальные информационные системы / А. И. Змитрович. - Минск: ТетраСи-стемс, 1997. - 496 с.

5. Черноруцкий, И. Г. Методы принятия решений / И. Г. Черноруцкий. - Санкт-Петербург: БХВ-Петербург, 2005. - 416 с.

6. Naylor, C.-M. Build Your Own Expert System / C.-M. Naylor. - Chichester: John Wiley & Sons, 1987. - 289 p.

7. Романов, В. П. Интеллектуальные информационные системы в экономике / В. П. Романов. - 2-е изд., стер.

Москва: Экзамен, 2007. - 496 с.

8. Экономическая эффективность и конкурентоспособность / Д. Ю. Муромцев [и др.]. - Тамбов: Изд-во Тамб. гос. техн. ун-та, 2007.- 96 с.

9. Долгов, А. И. Корректные модификации формулы Байеса для параллельного программирования / А. И. Долгов // Суперкомпьютерные технологии: мат-лы 3-й всерос. науч-техн. конф. - Ростов-на-Дону. - 2014.- Т. 1 - С. 122-126.

10. Долгов, А. И. О корректности модификаций формулы Байеса / А. И. Долгов // Вестник Дон. гос. техн. ун-та.

2014. - Т. 14, № 3 (78). - С. 13-20.

1. Gnedenko, B.V., Khinchin, A.Ya. An elementary introduction to the theory of probability. New York: Dover Publications, 1962, 144 р.

2. Ventsel, E.S. Teoriya veroyatnostey. 10th ed., reimpr. Moscow: Vysshaya shkola, 2006, 575 p. (in Russian).

3. Andronov, А.М., Kopytov, E.A., Gringlaz, L.Y. Teoriya veroyatnostey i matematicheskaya statistika. St.Petersburg: Piter, 2004, 481 p. (in Russian).

4. Zmitrovich, А.1. Intellektual"nye informatsionnye sistemy. Minsk: TetraSistems, 1997, 496 p. (in Russian).

5. Chernorutskiy, I.G. Metody prinyatiya resheniy. St.Petersburg: BKhV-Peterburg, 2005, 416 p. (in Russian).

6. Naylor, C.-M. Build Your Own Expert System. Chichester: John Wiley & Sons, 1987, 289 p.

7. Romanov, V.P. Intellektual"nye informatsionnye sistemy v ekonomike. 2nd ed., reimpr. Moscow: Ekzamen, 2007, 496 p. (in Russian).

8. Muromtsev, D.Y., et al. Ekonomicheskaya effektivnost" i konkurentosposobnost". Tambov: Izd-vo Tamb. gos. tekhn. un-ta, 2007, 96 p. (in Russian). IB

9. Dolgov, А1. Korrektnye modifikatsii formuly Bayesa dlya parallel"nogo programmirovaniya. Superkomp"yuternye tekhnologii: mat-ly 3-y vseros. nauch-tekhn. konf. Rostov-on-Don, 2014, vol. 1, pp. 122-126 (in Russian). ^

10. Dolgov, А1. O korrektnosti modifikatsiy formuly Bayesa. ^ Vestnik of DSTU, 2014, vol. 14, no. 3 (78), pp. 13-20 (in Russian). *

Сибирский государственный университет телекоммуникаций и информатики

Кафедра высшей математики

по дисциплине: «Теория вероятностей и математическая статистика»

«Формула полной вероятности и формула Бейеса(Байеса) и их применение»

Выполнил:

Руководитель: профессор Б.П.Зеленцов

Новосибирск, 2010


Введение 3

1. Формула полной вероятности 4-5

2. Формула Байеса(Бейеса) 5-6

3. Задачи с решениями 7-11

4. Основные сферы применения формулы Байеса(Бейеса) 11

Заключение 12

Литература 13


Введение

Теория вероятностей является одним из классических разделов математики. Она имеет длительную историю. Основы этого раздела науки были заложены великими математиками. Назову, например, Ферма, Бернулли, Паскаля.
Позднее развитие теории вероятностей определились в работах многих ученых.
Большой вклад в теорию вероятностей внесли ученые нашей страны:
П.Л.Чебышев, А.М.Ляпунов, А.А.Марков, А.Н.Колмогоров. Вероятностные и статистические методы в настоящее время глубоко проникли в приложения. Они используются в физике, технике, экономке, биологии и медицине. Особенно возросла их роль в связи с развитием вычислительной техники.

Например, для изучения физических явлений производят наблюдения или опыты. Их результаты обычно регистрируют в виде значений некоторых наблюдаемых величин. При повторении опытов мы обнаруживаем разброс их результатов. Например, повторяя измерения одной и той же величины одним и тем же прибором при сохранении определенных условий (температура, влажность и т.п.), мы получаем результаты, которые хоть немного, но все же отличаются друг от друга. Даже многократные измерения не дают возможности точно предсказать результат следующего измерения. В этом смысле говорят, что результат измерения есть величина случайная. Еще более наглядным примером случайной величины может служить номер выигрышного билета в лотерее. Можно привести много других примеров случайных величин. Все же и в мире случайностей обнаруживаются определенные закономерности. Математический аппарат для изучения таких закономерностей и дает теория вероятностей.
Таким образом, теория вероятностей занимается математическим анализом случайных событий и связанных с ними случайных величин.

1. Формула полной вероятности.

Пусть имеется группа событий H 1 , H 2 ,..., H n , обладающая следую­щими свойствами:

1) все события попарно несовместны: H i

H j =Æ; i , j =1,2,...,n ; i ¹ j ;

2) их объединение образует пространство элементарных исходов W:

.
Рис.8

В этом случае будем говорить, что H 1 , H 2 ,...,H n образуют полную группу событий . Такие события иногда называют гипотезами .

Пусть А – некоторое событие: А ÌW (диаграмма Венна представлена на рисунке 8). Тогда имеет место формула полной вероятности:

P (A ) = P (A /H 1)P (H 1) + P (A /H 2)P (H 2) + ...+P (A /H n )P (H n ) =

Доказательство. Очевидно: A =

, причем все события (i = 1,2,...,n ) попарно несовместны. Отсюда по теореме сложения вероятностей получаем

P (A ) = P (

) + P () +...+ P (

Если учесть, что по теореме умножения P (

) = P (A/H i)P (H i) (i = 1,2,...,n ), то из последней формулы легко получить приведенную выше формулу полной вероятности.

Пример . В магазине продаются электролампы производства трех заводов, причем доля первого завода - 30%, второго - 50%, третьего - 20%. Брак в их продукции составляет соответственно 5%, 3% и 2%. Какова вероятность того, что случайно выбранная в магазине лампа оказалась бракованной.

Пусть событие H 1 состоит в том, что выбранная лампа произведена на первом заводе, H 2 на втором, H 3 - на третьем заводе. Очевидно:

P (H 1) = 3/10, P (H 2) = 5/10, P (H 3) = 2/10.

Пусть событие А состоит в том, что выбранная лампа оказалась бракованной; A/H i означает событие, состоящее в том, что выбрана бракованная лампа из ламп, произведенных на i -ом заводе. Из условия задачи следует:

P (A / H 1) = 5/10; P (A / H 2) = 3/10; P (A / H 3) = 2/10

По формуле полной вероятности получаем

2. Формула Байеса(Бейеса)

Пусть H 1 ,H 2 ,...,H n - полная группа событий и А Ì W – некоторое событие. Тогда по формуле для условной вероятности

(1)

Здесь P (H k /A ) – условная вероятность события (гипотезы) H k или вероятность того, что H k реализуется при условии, что событие А произошло.

По теореме умножения вероятностей числитель формулы (1) можно представить в виде

P = P = P (A /H k )P (H k )

Для представления знаменателя формулы (1) можно использовать формулу полной вероятности

P (A )

Теперь из (1) можно получить формулу, называемую формулой Байеса :

По формуле Байеса исчисляется вероятность реализации гипотезы H k при условии, что событие А произошло. Формулу Байеса еще называют формулой вероятности гипотез. Вероятность P (H k ) называют априорной вероятностью гипотезы H k , а вероятность P (H k /A ) – апостериорной вероятностью.

Теорема. Вероятность гипотезы после испытания равна произведению вероятности гипотезы до испытания на соответствующую ей условную вероятность события, которое произошло при испытании, деленному на полную вероятность этого события.

Пример. Рассмотрим приведенную выше задачу об электролампах, только изменим вопрос задачи. Пусть покупатель купил электролампу в этом магазине, и она оказалась бракованной. Найти вероятность того, что эта лампа изготовлена на втором заводе. Величина P (H 2) = 0,5 в данном случае это априорная вероятность события, состоящего в том, что купленная лампа изготовлена на втором заводе. Получив информацию о том, что купленная лампа бракованная, мы можем поправить нашу оценку возможности изготовления этой лампы на втором заводе, вычислив апостериорную вероятность этого события.

Цель работы: сформировать навыки решения задач по теории вероятностей с помощью формулы полной вероятности и формулы Байеса.

Формула полной вероятности

Вероятность события А , которое может наступить лишь при условии появления одного из несовместных событий В х,В 2 ,...,В п, образующих полную группу, равна сумме произведений вероятностей каждого из этих событий на соответствующую условную вероятность события А:

Эту формулу называют формулой полной вероятности.

Вероятность гипотез. Формула Байеса

Пусть событие А может наступить при условии появления одного из несовместных событий В ь В 2 ,...,В п, образующих полную группу. Поскольку заранее неизвестно, какое из этих событий наступит, их называют гипотезами. Вероятность появления события А определяется по формуле полной вероятности:

Допустим, что произведено испытание, в результате которого появилось событие А . Требуется определить, как изменились (в связи с тем, что событие А уже наступило) вероятности гипотез. Условные вероятности гипотез находят по формуле

В этой формуле индекс / = 1,2

Эту формулу называют формулой Байеса (по имени английского математика, который её вывел; опубликована в 1764 г.). Формула Байеса позволяет переоценить вероятности гипотез после того, как становится известным результат испытания, в итоге которого появилось событие А .

Задача 1. Завод изготавливает определённого типа детали, каждая деталь имеет дефект с вероятностью 0,05. Деталь осматривается одним контролёром; он обнаруживает дефект с вероятностью 0,97, а если дефект не обнаружен, пропускает деталь в готовую продукцию. Кроме того, контролер может по ошибке забраковать деталь, не имеющую дефекта; вероятность этого равна 0,01. Найти вероятности следующих событий: А - деталь будет забракована; В - деталь будет забракована, но ошибочно; С - деталь будет пропущена в готовую продукцию с дефектом.

Решение

Обозначим гипотезы:

Н = (на контроль поступит стандартная деталь);

Н =(на контроль поступит нестандартная деталь).

Событие А = (деталь будет забракована).

Из условия задачи находим вероятности

Р Н (А) = 0,01; Pfi(A) = 0,97.

По формуле полной вероятности получаем

Вероятность того, что деталь будет забракована ошибочно, равна

Найдём вероятность того, что деталь будет пропущена в готовую продукцию с дефектом:

Ответ:

Задача 2. Изделие проверяется на стандартность одним из трёх товароведов. Вероятность того, что изделие попадёт к первому товароведу, равна 0,25, ко второму - 0,26 и к третьему - 0,49. Вероятность того, что изделие будет признано стандартным первым товароведом, равна 0,95, вторым - 0,98, третьим - 0,97. Найти вероятность того, что стандартное изделие проверено вторым контролёром.

Решение

Обозначим события:

Л. = (изделие для проверки попадёт к /-му товароведу); / = 1, 2, 3;

В = (изделие будет признано стандартным).

По условию задачи известны вероятности:

Также известны условные вероятности

По формуле Байеса находим вероятность того, что стандартное изделие проверено вторым контролёром:

Ответ: «0,263.

Задача 3. Два автомата производят детали, которые поступают на общий конвейер. Вероятность получения нестандартной детали на первом автомате равна 0,06, а на втором - 0,09. Производительность второго автомата вдвое больше, чем первого. С конвейера взята нестандартная деталь. Найти вероятность того, что эта деталь произведена вторым автоматом.

Решение

Обозначим события:

А. = (взятая с конвейера деталь произведена /-м автоматом); / = 1,2;

В = (взятая деталь окажется нестандартной).

Также известны условные вероятности

По формуле полной вероятности находим

По формуле Байеса находим вероятность того, что взятая нестандартная деталь произведена вторым автоматом:

Ответ: 0,75.

Задача 4. Испытывается прибор, состоящий из двух узлов, надёжность которых равна 0,8 и 0,9 соответственно. Узлы отказывают независимо друг от друга. Прибор отказал. Найти с учётом этого вероятности гипотез:

  • а) неисправен только первый узел;
  • б) неисправен только второй узел;
  • в) неисправны оба узла.

Решение

Обозначим события:

Д = (7-й узел не выйдет из строя); i = 1,2;

Д - соответствующие противоположные события;

А = (при испытании будет отказ прибора).

Из условия задачи получаем: Р(Д) = 0,8; Р(Л 2) = 0,9.

По свойству вероятностей противоположных событий

Событие А равно сумме произведений независимых событий

Используя теорему сложения вероятностей несовместных событий и теорему умножения вероятностей независимых событий, получаем

Теперь находим вероятности гипотез:

Ответ:

Задача 5. На заводе болты изготавливаются на трёх станках, которые производят соответственно 25%, 30% и 45% всего количества болтов. В продукции станков брак составляет соответственно 4%, 3% и 2%. Какова вероятность того, что болт, случайно взятый из поступившей продукции, окажется дефектным?

Решение

Обозначим события:

4 = (наудачу взятый болт изготовлен на /-м станке); i = 1, 2, 3;

В = (взятый наудачу болт окажется дефектным).

Из условия задачи по формуле классической вероятности находим вероятности гипотез:

Также по формуле классической вероятности находим условные вероятности:

По формуле полной вероятности находим

Ответ: 0,028.

Задача 6. Электронная схема принадлежит одной из трёх партий с вероятностями 0,25; 0,5 и 0,25. Вероятность того, что схема проработает сверх гарантийного срока службы для каждой из партий, соответственно составляет 0,1; 0,2 и 0,4. Найти вероятность того, что наугад взятая схема проработает сверх гарантийного срока службы.

Решение

Обозначим события:

4 = (наугад взятая схема из г-й партии); i = 1, 2, 3;

В = (наугад взятая схема проработает сверх гарантийного срока службы).

По условию задачи известны вероятности гипотез:

Также известны условные вероятности:

По формуле полной вероятности находим

Ответ: 0,225.

Задача 7. Прибор содержит два блока, исправность каждого из которых необходима для функционирования прибора. Вероятности безотказной работы для этих блоков соответственно равны 0,99 и 0,97. Прибор вышел из строя. Определить вероятность того, что отказали оба блока.

Решение

Обозначим события:

Д = (z-й блок выйдет из строя); i = 1,2;

А = (устройство выйдет из строя).

Из условия задачи по свойству вероятностей противоположных событий получаем: ДД) = 1-0,99 = 0,01; ДД) = 1-0,97 = 0,03.

Событие А наступает только тогда, когда наступает хотя бы одно из событий Д или А 2 . Поэтому это событие равно сумме событий А = Д + А 2 .

По теореме сложения вероятностей совместных событий получаем

По формуле Байеса находим вероятность того, что устройство вышло из строя из-за отказа обоих блоков.

Ответ:

Задачи для самостоятельного решения Задача 1. На складе телевизионного ателье имеется 70% кинескопов, изготовленных заводом № 1; остальные кинескопы изготовлены заводом № 2. Вероятность того, что кинескоп не выйдет из строя в течение гарантийного срока службы, равна 0,8 для кинескопов завода № 1 и 0,7 - для кинескопов завода № 2. Кинескоп выдержал гарантийный срок службы. Найти вероятность того, что он изготовлен заводом № 2.

Задача 2. На сборку поступают детали с трёх автоматов. Известно, что 1-й автомат даёт 0,3% брака, 2-й - 0,2%, 3-й - 0,4%. Найти вероятность поступления на сборку бракованной детали, если с 1-го автомата поступили 1000, со 2-го - 2000, с 3-го - 2500 деталей.

Задача 3. На двух станках производятся одинаковые детали. Вероятность того, что деталь, произведённая на первом станке, будет стандартной, равна 0,8, а на втором - 0,9. Производительность второго станка втрое больше производительности первого. Найти вероятность того, что стандартной будет деталь, взятая наудачу с транспортёра, на который поступают детали с обоих станков.

Задача 4. Руководитель компании решил воспользоваться услугами двух из трёх транспортных фирм. Вероятности несвоевременной доставки груза для первой, второй и третьей фирм равны соответственно 0,05; 0,1 и 0,07. Сопоставив эти данные с данными о безопасности грузоперевозок, руководитель пришёл к выводу о равнозначности выбора и решил сделать его по жребию. Найти вероятность того, что отправленный груз будет доставлен своевременно.

Задача 5. Прибор содержит два блока, исправность каждого из которых необходима для функционирования прибора. Вероятности безотказной работы для этих блоков соответственно равны 0,99 и 0,97. Прибор вышел из строя. Определите вероятность того, что отказал второй блок.

Задача 6. В сборочный цех поступают детали с трёх автоматов. Первый автомат даёт 3% брака, второй - 1% и третий - 2%. Определить вероятность попадания на сборку небракованной детали, если с каждого автомата поступило соответственно 500, 200, 300 деталей.

Задача 7. На склад поступает продукция трёх фирм. Причём продукция первой фирмы составляет 20%, второй - 46% и третьей - 34%. Известно также, что средний процент нестандартных изделий для первой фирмы равен 5%, для второй - 2% и для третьей - 1%. Найти вероятность того, что наудачу взятое изделие произведено второй фирмой, если оно оказалось стандартным.

Задача 8. Брак в продукции завода вследствие дефекта а составляет 5%, причём среди забракованных по признаку а продукции в 10% случаев встречается дефект р. А в продукции, свободной от дефекта а , дефект р встречается в 1% случаев. Найти вероятность встречи дефекта Р во всей продукции.

Задача 9. В фирме имеются 10 новых автомобилей и 5 старых, которые ранее находились в ремонте. Вероятность исправной работы для нового авто равна 0,94, старого - 0,91. Найти вероятность того, что наудачу выбранный автомобиль будет исправно работать.

Задача 10. Два датчика посылают сигналы в общий канал связи, причём первый из них посылает вдвое больше сигналов, чем второй. Вероятность получить искажённый сигнал от первого датчика равна 0,01, от второго - 0,03. Какова вероятность получить искажённый сигнал в общем канале связи?

Задача 11. Имеется пять партий изделий: три партии по 8 штук, из которых 6 стандартных и 2 нестандартных, и две партии по 10 штук, из которых 7 стандартных и 3 нестандартных. Наудачу выбирают одну из партий, а из этой партии берут деталь. Определить вероятность того, что взятая деталь будет стандартной.

Задача 12. Сборщик получает в среднем 50% деталей первого завода, 30% - второго завода и 20% - третьего завода. Вероятность того, что деталь первого завода отличного качества, равна 0,7; для деталей второго и третьего заводов соответственно 0,8 и 0,9. Наудачу взятая деталь оказалась отличного качества. Найти вероятность того, что деталь изготовлена первым заводом.

Задача 13. Таможенный досмотр автомашин осуществляют два инспектора. В среднем из 100 машин 45 проходят через первого инспектора. Вероятность того, что при досмотре машина, соответствующая таможенным правилам, не будет задержана, составляет 0,95 у первого инспектора и 0,85 - у второго. Найти вероятность того, что машина, соответствующая таможенным правилам, не будет задержана.

Задача 14. Детали, необходимые для сборки прибора, поступают с двух автоматов, производительность которых одинакова. Вычислите вероятность поступления на сборку стандартной детали, если один из автоматов даёт в среднем 3% нарушения стандарта, а второй - 2%.

Задача 15. Тренер по тяжёлой атлетике рассчитал, что для получения командных зачётных очков в данной весовой категории спортсмен должен толкнуть штангу в 200 кг. На место в команде претендуют Иванов, Петров и Сидоров. Иванов за время тренировок пытался поднять такой вес в 7 случаях, а поднял в 3 из них. Петров поднял в 6 случаях из 13, а Сидоров имеет 35%-ную вероятность успешно справиться со штангой. Тренер случайным жребием выбирает одного спортсмена в команду.

  • а) Найти вероятность того, что выбранный спортсмен принесёт команде зачётные очки.
  • б) Команда не получила зачётных очков. Найти вероятность того, что выступал Сидоров.

Задача 16. В белом ящике 12 красных и 6 синих шаров. В черном - 15 красных и 10 синих шаров. Бросают игральный кубик. Если выпадет количество очков, кратное 3, то наугад берут шар из белого ящика. Если выпадет любое другое количество очков, то наугад берут шар из черного ящика. Какова вероятность появления красного шара?

Задача 17. В двух ящиках имеются радиолампы. В первом ящике содержится 12 ламп, из них 1 нестандартная; во втором 10 ламп, из них 1 нестандартная. Из первого ящика наудачу взята лампа и переложена во второй. Найти вероятность того, что наудачу извлеченная из второго ящика лампа будет нестандартной.

Задача 18. В урну, содержащую два шара, опущен белый шар, после чего из нее наудачу извлечен один шар. Найти вероятность того, что извлеченный шар окажется белым, если равновозможны все возможные предположения о первоначальном составе шаров (по цвету).

Задача 19. В ящик, содержащий 3 одинаковые детали, брошена стандартная деталь, а затем наудачу одна деталь извлечена. Найти вероятность того, что извлечена стандартная деталь, если равновероятны все возможные предположения о числе стандартных деталей, первоначально находящихся в ящике.

Задача 20. Для улучшения качества радиосвязи используются два радиоприемника. Вероятность приема сигнала каждым приемником равна 0,8, и эти события (прием сигнала приемником) независимы. Определить вероятность приема сигнала, если вероятность безотказной работы за время сеанса радиосвязи для каждого приемника равна 0,9.

Формула Байеса

Теорема Байеса - одна из основных теорем элементарной теории вероятностей , которая определяет вероятность наступления события в условиях, когда на основе наблюдений известна лишь некоторая частичная информация о событиях. По формуле Байеса можно более точно пересчитывать вероятность, беря в учёт как ранее известную информацию, так и данные новых наблюдений.

«Физический смысл» и терминология

Формула Байеса позволяет «переставить причину и следствие»: по известному факту события вычислить вероятность того, что оно было вызвано данной причиной.

События, отражающие действие «причин», в данном случае обычно называют гипотезами , так как они - предполагаемые события, повлекшие данное. Безусловную вероятность справедливости гипотезы называют априорной (насколько вероятна причина вообще ), а условную - с учетом факта произошедшего события - апостериорной (насколько вероятна причина оказалась с учетом данных о событии ).

Следствие

Важным следствием формулы Байеса является формула полной вероятности события, зависящего от нескольких несовместных гипотез (и только от них! ).

- вероятность наступления события B , зависящего от ряда гипотез A i , если известны степени достоверности этих гипотез (например, измерены экспериментально);

Вывод формулы

Если событие зависит только от причин A i , то если оно произошло, значит, обязательно произошла какая-то из причин, т.е.

По формуле Байеса

Переносом P (B ) вправо получаем искомое выражение.

Метод фильтрации спама

Метод, основанный на теореме Байеса, нашел успешное применение в фильтрации спама .

Описание

При обучении фильтра для каждого встреченного в письмах слова высчитывается и сохраняется его «вес» - вероятность того, что письмо с этим словом - спам (в простейшем случае - по классическому определению вероятности: «появлений в спаме / появлений всего» ).

При проверке вновь пришедшего письма вычисляется вероятность того, что оно - спам, по указанной выше формуле для множества гипотез. В данном случае «гипотезы» - это слова, и для каждого слова «достоверность гипотезы» - % этого слова в письме, а «зависимость события от гипотезы» P (B | A i ) - вычисленнный ранее «вес» слова. То есть «вес» письма в данном случае - не что иное, как усредненный «вес» всех его слов.

Отнесение письма к «спаму» или «не-спаму» производится по тому, превышает ли его «вес» некую планку, заданную пользователем (обычно берут 60-80 %). После принятия решения по письму в базе данных обновляются «веса» для вошедших в него слов.

Характеристика

Данный метод прост (алгоритмы элементарны), удобен (позволяет обходиться без «черных списков» и подобных искусственных приемов), эффективен (после обучения на достаточно большой выборке отсекает до 95-97 % спама, и в случае любых ошибок его можно дообучать). В общем, есть все показания для его повсеместного использования, что и имеет место на практике - на его основе построены практически все современные спам-фильтры.

Впрочем, у метода есть и принципиальный недостаток: он базируется на предположении , что одни слова чаще встречаются в спаме, а другие - в обычных письмах , и неэффективен, если данное предположение неверно. Впрочем, как показывает практика, такой спам даже человек не в состоянии определить «на глаз» - только прочтя письмо и поняв его смысл.

Еще один, не принципиальный, недостаток, связанный с реализацией - метод работает только с текстом. Зная об этом ограничении, спамеры стали вкладывать рекламную информацию в картинку, текст же в письме либо отсутствует, либо не несет смысла. Против этого приходится пользоваться либо средствами распознавания текста («дорогая» процедура, применяется только при крайней необходимости), либо старыми методами фильтрации - «черные списки» и регулярные выражения (так как такие письма часто имеют стереотипную форму).

См. также

Примечания

Ссылки

Литература

  • Берд Киви. Теорема преподобного Байеса . // Журнал «Компьютерра», 24 августа 2001 г.
  • Paul Graham. A plan for spam (англ.). // Персональный сайт Paul Graham.

Wikimedia Foundation . 2010 .

Смотреть что такое "Формула Байеса" в других словарях:

    Формула, имеющая вид: где a1, А2,..., Ап несовместимые события, Общая схема применения Ф. в. г.: если событие В может происходить в разл. условиях, относительно которых сделано п гипотез А1, А2, ..., Аn с известными до опыта вероятностями P(A1),… … Геологическая энциклопедия

    Позволяет вычислить вероятность интересующего события через условные вероятности этого события в предположении неких гипотез, а также вероятностей этих гипотез. Формулировка Пусть дано вероятностное пространство, и полная группа попарно… … Википедия

    Позволяет вычислить вероятность интересующего события через условные вероятности этого события в предположении неких гипотез, а также вероятностей этих гипотез. Формулировка Пусть дано вероятностное пространство, и полная группа событий, таких… … Википедия

    - (или формула Байеса) одна из основных теорем теории вероятностей, которая позволяет определить вероятность того, что произошло какое либо событие (гипотеза) при наличии лишь косвенных тому подтверждений (данных), которые могут быть неточны … Википедия

    Теорема Байеса одна из основных теорем элементарной теории вероятностей, которая определяет вероятность наступления события в условиях, когда на основе наблюдений известна лишь некоторая частичная информация о событиях. По формуле Байеса можно… … Википедия

    Байес, Томас Томас Байес Reverend Thomas Bayes Дата рождения: 1702 год(1702) Место рождения … Википедия

    Томас Байес Reverend Thomas Bayes Дата рождения: 1702 год(1702) Место рождения: Лондон … Википедия

    Байесовский вывод один из методов статистического вывода, в котором для уточнения вероятностных оценок на истинность гипотез при поступлении свидетельств используется формула Байеса. Использование байесовского обновления особенно важно в… … Википедия

    Для улучшения этой статьи желательно?: Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное. Проставив сноски, внести более точные указания на источники. Пере … Википедия

    Будут ли заключенные друг друга предавать, следуя своим эгоистическим интересам, или будут молчать, тем самым минимизируя общий срок? Дилемма заключённого (англ. Prisoner s dilemma, реже употребляется название «дилемма … Википедия

Книги

  • Теория вероятностей и математическая статистика в задачах: Более 360 задач и упражнений , Борзых Д.. В предлагаемом пособии содержатся задачи различного уровня сложности. Однако основной акцент сделан на задачах средней сложности. Это сделано намеренно с тем, чтобы побудить студентов к…

Полезная страница? Сохрани или расскажи друзьям

Если событие А может произойти только при выполнении одного из событий , которые образуют полную группу несовместных событий , то вероятность события А вычисляется по формуле

Эта формула называется формулой полной вероятности .

Вновь рассмотрим полную группу несовместных событий , вероятности появления которых . Событие А может произойти только вместе с каким-либо из событий , которые будем называть гипотезами . Тогда по формуле полной вероятности

Если событие А произошло, то это может изменить вероятности гипотез .

По теореме умножения вероятностей

.

Аналогично, для остальных гипотез

Полученная формула называется формулой Байеса (формулой Бейеса ). Вероятности гипотез называются апостериорными вероятностями , тогда как - априорными вероятностями .

Пример. В магазин поступила новая продукция с трех предприятий. Процентный состав этой продукции следующий: 20% - продукция первого предприятия, 30% - продукция второго предприятия, 50% - продукция третьего предприятия; далее, 10% продукции первого предприятия высшего сорта, на втором предприятии - 5% и на третьем - 20% продукции высшего сорта. Найти вероятность того, что случайно купленная новая продукция окажется высшего сорта.

Решение. Обозначим через В событие, заключающееся в том, что будет куплена продукция высшего сорта, через обозначим события, заключающиеся в покупке продукции, принадлежащей соответственно первому, второму и третьему предприятиям.

Можно применить формулу полной вероятности, причем в наших обозначениях:

Подставляя эти значения в формулу полной вероятности, получим искомую вероятность:

Пример. Один из трех стрелков вызывается на линию огня и производит два выстрела. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго - 0,5; для третьего - 0,8. Мишень не поражена. Найти вероятность того, что выстрелы произведены первым стрелком.

Решение. Возможны три гипотезы:

На линию огня вызван первый стрелок,

На линию огня вызван второй стрелок,

На линию огня вызван третий стрелок.

Так как вызов на линию огня любого стрелка равновозможен, то

В результате опыта наблюдалось событие В - после произведенных выстрелов мишень не поражена. Условные вероятности этого события при сделанных гипотезах равны:

по формуле Байеса находим вероятность гипотезы после опыта:

Пример. На трех станках-автоматах обрабатываются однотипные детали, поступающие после обработки на общий конвейер. Первый станок дает 2% брака, второй – 7%, третий – 10%. Производительность первого станка в 3 раза больше производительности второго, а третьего – в 2 раза меньше, чем второго.

а) Каков процент брака на конвейере?

б) Каковы доли деталей каждого станка среди бракованных деталей на конвейере?

Решение. Возьмем с конвейера наудачу одну деталь и рассмотрим событие А – деталь бракованная. Оно связано с гипотезами относительно того, где была обработана эта деталь: – взятая наудачу деталь обработана на -ом станке, .

Условные вероятности (в условии задачи они даны в форме процентов):

Зависимости между производительностями станков означают следующее:

А так как гипотезы образуют полную группу, то .

Решив полученную систему уравнений, найдем: .

а) Полная вероятность того, что взятая наудачу с конвейера деталь – бракованная.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!