Упражнения. Питание. Диеты. Тренировки. Спорт

Показатель становой силы. Силовые характеристики мышечной системы. Определение силовой выносливости

Для работы необходим ы: кистевой динамометр, секундомер, весы для измерения массы тела. Объект исследования человек.

Проведение работы : Измерения рекомендуется проводить на нескольких испытуемых, поскольку в этом случае будет заметна разница выраженности индивидуальных реакций. Регистрацию каждого показателя экспериментатор проводит с обеих сторон и отмечает его выраженность и симметричность.1) Для определения абсолютного показателя силы мышц -сгибателей кисти испытуемый в положении стоя отводит вытянутую руку с динамометром (подвижной частью к пальцам) под прямым углом к туловищу (на уровне плеча). Вторая, свободная рука, опущена и расслаблена. По сигналу экспериментатора испытуемый дважды выполняет максимальное усилие на динамометре (максимально его сжимает) на каждой руке. Фиксируется лучший результат. 2) Для определения среднего показателя силы мышц (Р), который отражает уровень работоспособности, испытуемый в исходном положении выполняет 10-кратные усилия с частотой 1 раз в 5 сек. Результаты записывают и по формуле вычисляют Р = (f 1 +f 2 +f 3 +…+f n) / n, где Р – средний показатель силы мышц, f 1 ,f 2 ,f 3 – показатели динамометра при отдельных мышечных усилиях, n – количество попыток. 3) Показатель силы руки (ПСР) выражают в % и рассчитывают по формуле: ПСР (% ) = абсолютная сила мышц (кг) х 100% / масса тела (кг) . 4) Снижение уровня работоспособности рассчитывают по формуле: S=[(f 1 -f min)/f max ] х 100 , где S –показатель снижения силы мышц, f 1 – величина начального мышечного усилия, f min – минимальная величина усилия, f max – максимальная величина усилия.

Оформление результатов и их оценка: запишите в протокол абсолютные показатели силы, вычислите уровень работоспособности (Р), ПСР и показатель снижения работоспособности мышц по результатам 10- кратных усилий. Начертите график, который выявит характер снижения работоспособности мышц: на оси абсцисс отло­жите порядковые номера усилий, на оси ординатпоказатели динамометра при каждом усилии. Сравните результаты у нескольких испытуемых. Средние величины абсолютной мышечной силы кисти у человека правши составляют: правая кисть – м-35-45 кг, ж-25-33 кг; левая кисть – на 5-10 кг меньше. В среднем ПСР у м = 60-70%, у ж = 45-50 %.

ТЕСТОВЫЕ ЗАДАНИЯ ДЛЯ САМОКОНТРОЛЯ УРОВНЯ знаний:


1. В эксперименте под действием химического вещества в мышцах ослаблена работа Са 2 - насоса. Какие явления будут развиваться при этом?

А. Снижение скорости распространения ПД

В. Активация натрий-калиевого насоса

С. Увеличение продолжительности расслабления

D. Увеличение длительности ПД

Е. Снижение потенциала покоя

2. У спортсменов за счет тренировок может увеличится объем мышц. Какое вещество является непосредственным источником энергии мышечного сокращения?

А. Аденозинфосфат

В. Аденозинтрифосфат

С. Молочная кислота

D. Нейтральные жирные кислоты

Е. Креатинфосфат

3. Какой вид сокращения мышц верхней конечности имеет место при попытке поднять непосильный груз?

А. Фазический

В. Ауксотонический

С. Изотонический

D. Изометрический

Е. Все ответы верны

4. Если мышца развивает силу и при этом ее длина не уменьшается, то такой вид сокращения будет называться:

А. Изотоническим

В. Изомерическим

С. Ауксотоническим

D. Изометрическим

Е. Тетаническим

5. Если взаимодействие между актином и миозином в скелетных мышцах при патологическом процессе изменится таким образом, что связи могут образовываться, но не разрываться, то мышца:

А. Будет напряженной и неэластичной

B. Сократится с повышенной скоростью

С. При стимуляции гидролиз АТФ будет происходить на повышенном уровне

D. Во время стимуляции сократится и расслабится как обычно

Е. Утратит поперечную исчерченность

6. Исследуемый получил задание выполнить на протяжении 1 часа 1200 кГм 2 работы. Какие условия работы обеспечивают выполнение этой работы?

7. Повышение содержания ионов кальция в саркоплазме мышцы приводит к ее сокращению. Укажите возможную причину этого.

А. Влияние кальция на саркоплазматический ретикулум

В. Активация кальциевого насоса

С. Блокада миозиновой АТФ-азы

D. Активация активных центров актина

Е. Изменение структуры молекулы тропомиозина.

8. При раздражении скелетной и гладкой мышцы с одной и той же частотой гладкая мышца отвечает тетаническим сокращением, а скелетная - одиночными сокращениями. Какими особенностями гладкой мышцы это обусловлено?

А. Рефрактерность гладкой мышцы больше

В. Лабильность гладкой мышцы больше

С. Хронаксия гладкой мышцы меньше

D. Длительность сокращения гладкой мышцы меньше

Е. В гладкой мышце сильнее развит саркоплазматический ретикулум.

9. В мышце фармакологическим методом заблокирована АТФ-аза, после чего она утратила свойство сократимости. Какая возможная причина этого?

А. Открытие кальциевых каналов ретикулума

В. Открытие калиевых каналов поверхностной мембраны

С. Остановка Nа-К- насоса поверхностной мембраны

D. Натриевая инактивация

Е. Активация кальциевого насоса ретикулума.

10. При фосфоглюконатном пути окисления глюкозы энергия акумулируется:

С. В креатинфосфате

Ответы: 1.С, 2.В, 3.D, 4.D, 5.A, 6.B, 7.D, 8.A, 9.C, 10.D.


ТЕСТОВЫЕ ЗАДАНИЯ ДЛЯ САМОКОНТРОЛЯ по программе «Крок-1»:


1. После забега на длинную дистанцию у спортсмена возникла контрактура икроножных мышц (мышц нижних конечностей). Накопление какого продукта метаболизма, наиболее вероятно, вызвало это состояние?

А. Мочевины

В. Мочевой кислоты

С. Креатинина

D. Пировиноградной кислоты

Е. Молочной кислоты

2. После тренировки у штангиста возникла контрактура трёхглавой мышцы. Уменьшение концентрации в мышцах какого вещества, наиболее вероятно, вызвало это состояние?

В. Пировиноградной кислоты

С. Молочной кислоты

D. Креатинина

Е. Глюкозы

3. В эксперименте к мышце взятой из мочеточника животного подвешивают груз. Мышца растягивается и остаётся в таком положении после снятия груза. Какое свойство мышечной ткани демонстрирует данный опыт?

А. Растяжимости

В. Эластичности

С. Пластичности

D. Автоматии

Е. Сократимости

4.Тетаническое сокращение скелетной мышцы возникает, если интервал между раздражающими импульсами...

А. Меньше, чем продолжительность одиночного сокращения

5. Са2+ в миоплазме необходим для осуществления процесса...

А. Замыкания акто-миозиновых мостиков

В.Размыкания акто-миозиновых мостиков

С. Формирования головок миозина

Д. Формирования тропомиозина

Е. Распространения ПД

6. Серия одиночных сокращений скелетных мышц возникает, если интервал между раздражениями...

А.Меньше, чем продолжительность одиночного сокращения

В. Больше в 2 раза, чем продолжительность одиночного сокращения

С. Больше в 5 раз, чем продолжительность одиночного сокращения

Д. Равно продолжительности одиночого сокращения

Е. Больше в 7 раз, чем подолжительность одиночного сокращения

7. Роль Са2+ в сокращении скелетной мышце состоит в...

А. Конформационном изменении тропонина

В.Конформационном изменении актина

С.Обеспечении движения головки миозина

Д.Блокировании активного центра миозина

Е. Блокировании активного центра актина

8. При условии действия на скелетную мышцу яда, угнетающего синтез АТФ, нарушится процесс … в период мышечного сокращения

А. Скольжения актина и миозина

В. Открытия активных центров актина

С. Выхода Ca2+ из саркоплазматического ретикулума

Д. Закрытия активных центров актина

Е. Изменения конформации тропонина

9. Зубчатый тетанус мышц возникает, если следующее раздражение попадает на...

А. Фазу расслабления предыдущего сокращения

В. Фазу укорочения предыдущего сокращения

С. Латентный период предыдущего сокращения

Д. Период покоя

Е. Любую фазу предыдущего сокращения

10. При действии на скелетную мышцу яда, угнетающего синтез АТФ, серия последующих раздражений пиведет к тому, что концентрация Са2+ в саркоплазме...

А. Увеличится

В. Уменьшится

С. Не изменится

Д. Исчезнет

Е. Конформируется

Ответы: 1.E, 2.A, 3.C, 4.A, 5.A, 6.B, 7.A, 8.A, 9.A, 10.A.


Ситуационные задачи:

1. Длительность рефрактерности мышцы 10 мсек. Длительность фазы сокращения 200 мсек. Рассчитайте интервал частот при которых данная мышца будет сокращаться в режиме гладкого тетануса.

2. Схема какого процесса приведена ниже? Добавьте недостающие звенья: Раздражение клеточной мембраны - возникновение ПД - проведение его вдоль волокна по Т-системе -? - взаимодействие актина и миозина -? - активация Са-насоса -? - расслабление мышцы.

3. При каждом импульсе возбуждения в межфибриллярное пространство выходит 1 функциональная Са ++ единица. Весь кальций возвращается в ретикулюм с постоянной скоростью 10 м/сек. При какой частоте раздражения будет происходить суммация.

4. Рефрактерный период мышцы равен 5 мсек. Лабильность мышцы в 4 раза менше теоретической. Нарисуйте миограммы следующих частотах раздражения; 10 Гц, 50 Гц, 100 Гц.

5. Площадь физиологического поперечного сечения мышцы 25 см 2 . Рассчитайте удельную силу мышцы, если она в состоянии поднять максимально 200 кг?

6. Рассчитайте с какой частотой надо раздражать скелетную мышцу для получения зубчатого и гладкого тетануса, если одиночное сокращение её продолжается 0,1с (100мсек).

7. Рассчитайте с какой частотой надо раздражать скелетную мышцу для получения зубчатого и гладкого тетануса, если одиночные сокращения её продолжаются 0,05с (50мсек).

8. Рассчитайте сколько израсходует икроножная мышца лягушки АТФ за 5 секунд зубчатого и гладкого тетануса при условиях: А. одиночное сокращение длится 100мс; б) зубчатый тетанус – при частоте раздражения 15 в 1”; В. гладкий тетанус – при частоте 30 в 1”; г) на одно мышечное сокращение расходуется 0,3 мкМоль АТФ на 1,0г массы мышцы; D. масса икроножной мышцы лягушки 12,0г; Е. содержание АТФ на 1,0г мышечной массы = 3 мкМоль.

ответы к Ситуационным задачам:

1. Для гладкого тетанического сокращения необходимо, чтобы интервал между раздражениями был длиннее рефрактерного периода, но короче всей длительности сокращения. В данном слу­чае этот интервал лежит в пределах от 10 до 70 мсек, значит при частоте от 15 до 100 Гц будет наблюдаться тетанус. При меньшей частоте будут одиночные сокращения, при большей - пессимум.

2. Приведена схема электромеханического сопряжения: Раздражение клеточной мембраны – возникновение ПД – проведение его вдоль волокна по Т-системе –освобождение кальция из саркоплазматического ретикулюма – взаимодействие актина и миозина – сокращение мышечного волокна – активация Са-насоса – возвращение кальция в цистерны – расслабление мышцы.

3. Если весь Са ++ возвращается в ретикулюм за 100 мсек, значит, суммация сокращения и зубчатый тетанус будут возникать при частоте больше 10 Гц. При частоте раздражения 50 Гц перерыв между импульсами в 5 раз короче, и за это время в ретикулюм вернется уже не 1 функциональная единица Са ++ , а только 1/5 единицы. 4/5 же остаются в межфибриллярном пространстве и накапливаются там. Поскольку максимальная концентрация Са + (5 х 10 мэкв/л) в 10 раз больше критической (0,5 х 10 6 мэкв/л), то такое количество Са ++ накопится в пространстве через 10:4/5 = 12,5 импульсов. Это значит, что в ответ на 13-й импульс мышца даст максимальную высоту сокращения.

4. В данном случае теоретически ткань могла бы воспроизводить 1000:5 = 200 импульсов. В условии сказано, что истинна лабильность в 4 раза меньше, т. е. равна 50 Гц. Значит, при частоте раздражения 10 Гц мышца будет отвечать одиночными сокращ-ниями или зубчатым тетанусом, при 50 Гц - гладким, а при частоте более 50 Гц возникнет пессимум частоты.

5. Удельная сила мышцы равна отношению максимального груза к площади физиологического поперечного сечения. В данном случае она равна 8 кг/см 2 . По-видимому, это двуглавая мышца плеча человека.

6. Для получения зубчатого тетануса указанной мышцы нужна частота 11-19 в 1”, т.к. при частоте 10 в 1“ получим 10 одиночных сокращений. При этом каждое следующее раздражение падает на мышцу сразу после её расслабления – интервал между раздражениями 100 мс. При частоте 20 в 1“ получим гладкий тетанус, т.к. каждое раздражение будет заставать мышцу еще в состоянии сокращения, интервал между раздражениями 50 мс. Для получения гладкого тетануса частота раздражений должна быть 20 и более в 1“.

7. Для получения зубчатого тетануса указанной мышцы частота раздражений должна быть 21-39 в 1 “. Для получения гладкого тетануса – 40 и более в 1 сек.

8. В икроножной мышце лягушки массой 12г содержится 36 мкмоль АТФ. 1,0 г – 3 мкМоль АТФ 3 мкМоль х 12 = 36 мкМоль АТФ. При зубчатом тетанусе, вызванном частотой 15 в сек расходуется АТФ 4,5 мкмоль в 1 “ : 0,3 мкМоль АТФ х 15 = 4,5 мкМоль АТФ в 1 сек. Т.к. сокращение длится 5 сек, то 4,5мкМоль АТФ в 1 “ х 5 = 22,5 мкМоль АТФ. При гладком тетанусе частотой 30 в сек расходуется АТФ 9 мкмоль в 1 сек. Расчет: 0,3 мкМоль АТФ х 30 = 9,0 мкМоль АТФ, за 5 сек гладкого тетануса мышца израсходует 45 мкМоль АТФ.

Обследуемый в положении «стоя» берет динамометр и, вытянув руку в сторону, со всей силой сжимает прибор. Не разрешается сходить с места и сгибать руку в локтевом суставе. Исследование проводится 2-3 раза. Записывается лучший результат.

Ход работы:

    Весо-ростовой индекс (Кетле) - определяет сколько граммов веса приходится на каждый сантиметр роста:

ВРИ= Вес (гр)

Рост (см)

Норма для девушек 325-375г., для юношей 350-400г. веса.

    Экскурсия грудной клетки - это разница величин окружностей при максимальном вдохе и максимальном выдохе:

ЭГК= ОГК (на вдохе)- ОГК (на выдохе)

Норма для девушек- 5-7 см, для юношей- 7-10см.

    Метод Эрисмана - определяет пропорциональность соотношения между окружностью грудной клетки и ростом. Вычисляется в два приема:

ОГК (на паузе)= ОГК (вдох) +ОГК (выдох)

Э= ОГК (на паузе, см)-1/2 роста (см)

Норма для девушек-3-7 см, для юношей-5-8см

    Динамометрия - определяет среднюю величину силы мышц правой и левой кисти.

Д= Сила мышц руки (кг) 100%

Масса тела (кг)

Норма для девушек- 45-50%, для юношей 60-70%

    Осанка - измерение спереди характеризует ширину плеч, а сзади- величину дуги спины

А= Ширина плеч 100%

Величина дуги спины

В норме показатель осанки колеблется в пределах 95-110%. Если он менее 90 или более 125%, то это свидетельствует о выраженном нарушении осанки.

    Формула Пиньи- определяет крепость телосложения:

КТ= Рост (см)- (Масса тела (кг)+ ОГК в фазе выдоха (см))

Меньше 10- крепкое телосложение 26-35- слабое телосложение

10-20- хорошее телосложение 36 и более- очень слабое.

21-25- среднее телосложение

    Сравните полученные данные с нормативными данными, сделайте вывод о развитии собственного организма.

Контрольные вопросы:

    Что такое физическое развитие?

    Какие показатели используются при его исследовании?

    Дайте определение понятиям рост и развитие?

    Что такое антропометрия?

    Что такое динамометрия?

    Что такое экскурсия грудной клетки?

    Что называют жизненной емкостью легких?

    Что называют осанкой?

Работа №2 Тема: «Определение уровня физического развития детей и подростков центильным методом»

Цель работы: ознакомить студентов с центильным методом оценки физического развития.

Оборудование : ростометр, весы, сантиметровая лента, динамометр; центильные таблицы.

По каждому признаку физического развития в оценочных шкалах приводят семь фиксированных центилей: 3,10, 25, 50, 75, 90 и 97. Центиль (или %)- это доля здоровых детей данного пола и возраста с одними и теми же показателями роста или массы тела. Промежутки между центилями называются «коридорами», каждый из которых соответствует определенному уровню физического развития (таблица 1).

Таблица 1

Ход работы:

    Произведите измерение роста и массы тела испытуемого.

    С помощью таблиц 2 и 3, в которых, на пересечении значений длины и массы тела по возрасту, определяется соответствующий «центильный коридор».

— метод измерения силы сокращения различных мышечных групп; позволяет определить симметричность (или степень асимметрии) работы мышечной системы.

В основе работы динамометра — физический закон Гука, постулирующий, что деформация, возникающая в любом упругом теле (например, пружине), прямо пропорциональна напряжению (приложенному к указанному телу усилию).

Как компенсация силы деформации, в теле возникает противодействующая сила упругости, стремящаяся вернуть телу исходную форму и размеры.

Динамометр — (от греч. δύναμις, «сила», μετρέω — «измеряю») —
представляет собой контрольно-измерительное устройство, один из основных приборов для измерения у человека момента силы.

Динамометрия: развитие метода измерения

Самым первым прибором, использовавшимся для измерения силы, были весы. Несколько веков назад, в эпоху Ренессанса (в XVIII столетии), впервые началось совершенствование динамометров (среди изобретателей-рационализаторов в списках числятся Ренье, Томпсон и Броун). В результате, на сегодняшний день, имеется очень много разновидностей этих приборов для самых разных нужд, различающихся по функциональной принадлежности, конструкционным особенностям силового звена, предназначению. Подобная гибкость обуславливает весьма широкий диапазон измерений усилия: от нескольких сотых долей ньютонов до нескольких десятков тысяч килоньютонов.
Медицинские динамометры представляют собой специализированные приборы для определения силы, выносливости. Анализ данных, полученных от динамометров, позволяет оценить общее состоянии мышц, уровень работоспособности.

В реабилитологии динамометры помогают контролировать восстановление больного после операций , травм , перенесенных заболеваний опорно-двигательного аппарата .

Как диагностический прибор, динамометр незаменим также для замеров тренировочных показателей силы мышц профессиональных спортсменов.

Для этих целей на практике применяют несколько типов динамометров :

  • кистевые динамометры показывают силу мышц-сгибателей пальцев;
  • становой динамометр — определяет «становую силу» — силу мышц-разгибателей туловища.

Динамометрия — проведение процедуры

Программно-аппаратный комплекс расшифровывает показатели, в результате чего реабилитолог видит полную картину динамики лечения.

Динамометрия – методика измерения силы отдельной мышцы или группы мышц при помощи специальных приборов – динамометров.

Кистевая динамометрия

Кистевая динамометрия – измерение силы мышц-сгибателей пальцев. Динамометрия кисти выглядит как одномоментное максимальное воздействие на прибор мышечных волокон. При разогнутом предплечье исследуемый сжимает ручной динамометр одной кистью. Исследование проводится для обеих конечностей, после чего производится сравнение полученных данных. При помощи реверсивного прибора проводят исследование также для разгибателей предплечья, сгибателей бедра и голени.

Становая динамометрия и динамография

Становая динамометрия – измерение силы мышечных групп, выпрямляющих туловище. Нижняя планка станового динамометра должна быть зафиксирована под ступнями испытуемого. Исследуемый обхватывает верхнюю планку кистями рук и тянет вверх. При этом он пытается выпрямиться при разогнутых в коленях нижних конечностях.

Помимо становых, реверсивных и ручных пружинных динамометров существуют ртутные приборы, в которых мышечная сила определяется как уровнем давления на датчик при помощи ртутного манометра.

Динамография – вид исследования, который позволяет регистрировать мышечные сокращения в виде серии кривых на графике. Этот метод показывает длительное мышечное усилие мышцы или группы мышц в динамике. Динамография используется в курортологии, неврологии.


Выражаются показатели динамометрии абсолютными величинами или относительными (по отношению к чему-либо, к массе, например). Данные измерения учитываются антропометрией, в физиологии, в гигиене спорта и спортивной медицине. Также полученные результаты используют для оценки степени физического развития человека.

Оценка результатов

Разработаны различные шкалы оценки показателей динамометрии. Существуют усредненные величины результатов динамометрии, которые принимаются за норму. Они различаются в зависимости от роста, пола и возрастной категории испытуемого. Однако следует учитывать и другие индивидуальные особенности пациента.


Одними из основных показателей физического развития у детей, начиная с возраста восьми лет и до восемнадцати, являются становая сила и сила правой кисти, выраженные в килограммах. В неврологии могут использоваться и измерения других групп мышц при необходимости таковых. Чаще всего исследования выполняются при неврологических заболеваниях, сопровождающихся мышечной слабостью (миастении, парезы после инсульта, оценка эффективности лечения рассеянного склероза со слабостью конечностей и т.д.).

Динамометрия у детей различного пола и возраста дает разные результаты, несмотря на одинаковую методику проведения. Измерение проводится два раза, через небольшую паузу для отдыха.

Возрастные показатели и норма динамометрии

Так, нормы показателей силы правой кисти у мальчиков:
- от 8 до 11 лет варьируются от 13,0 до 18, 5 кг;
- от 12 до 15 лет – от 21, 6 до 37,6 кг;
- от 16 до 19 лет – от 45,9 до 51,0 кг.

Для девочек эти нормы имеют гораздо меньшие значения:
- от 8 до 11 лет соответственно норма от 9,8 до 17,1 кг;
- от 12 до 15 лет норма равна от 19,9 до 28, 3;
- от 16 до 19 лет – от 31, 3 до 33,8 кг.

Динамометрия - это измерение силы мышц. Напряжение, развиваемое той или иной группой мышц, является функциональной характеристикой двигательного анализатора и рассматривается как показатель общего фи­зического развития. При исследовании силы мышечного напряжения вы­деляют показатели силы рук, ног, пальцев и становой силы (т. е. силы мышц, разгибающих туловище в тазобедренных суставах) и т. д. В психофизиоло­гии чаще всего применяется измерение силы кисти и становой силы. Ис­следование выносливости при статических мышечных напряжениях пред­ставляет особый интерес в связи с тем, что присутствует во всякой мышечной деятельности и занимает в ней довольно большое место. Для оценки стати­ческой мышечной выносливости используется специальный вариант дина­мометрической методики. В процессе измерения силы мышечного напря­жения рассчитывают коэффициент асимметрии (КА). В общей форме его величину определяют по следующей формуле:

Где Vn - Показатель правой руки, кг; Vn - показатель левой руки, кг.

В практике метод определения мышечной силы кисти применяют как тест для установления уровня общего физического развития человека. С этой целью производят замеры мышечной силы обеих рук до и после работы. Сопоставление соотношения мышечной силы правой и левой рук до и после рабочей нагрузки свидетельствует об изменении вовлеченно­сти билатерального регулирования в организме человека под воздействи­ем нагрузки.


ГЛАВА 2. МЕТОДЫ ИССЛЕДОВАНИЯ ПСИХОМОТОРНОЙ ОРГАНИЗАЦИИ

Среднестатистические показатели силы (в килограммах) кистей рук и становой силы для студенческой возрастной группы приведены в табл. 2.16.

Таблица 2.16. Среднестатистические показатели силы кистей рук и становой силы для студенческой возрастной группы, кг

Для измерения мышечной силы рук и становой силы используется руч­ной пружинный динамометр Колена и становой динамометр. При замерах необходимо соблюдение ряда условий и прежде всего постоянство позы испытуемого. При измерении силы кисти испытуемый сидит на стуле; рука, для которой производят измерения, вытянута вперед, согнута в локтевом суставе; свободная рука на колене.

Инструкция. Сожмите рукой пружину динамометра как можно сильнее.

Замеры повторяют по 3 раза для правой и левой руки, как до, так и после нагрузки. После этого измеряют становую силу также до и после нагрузки.

Инструкция. Встаньте на нижние бранши динамометра. При помо­щи цепочки подгоните динамометр по себе, т. е. таким образом, чтобы из­меряющая часть прибора находилась на уровне ваших коленных чашечек. Взявшись обеими руками за верхние бранши, потяните их вверх как можно сильнее, разгибая при этом туловище.

Затем испытуемый выполняет 20 приседаний, после чего эксперимента­тор по 3 раза производит замеры силы каждой руки, становую силу измеря­ет однократно.

Обработка результатов состоит в следующем:

1) вычислить средние значения (М) силы правой и левой рук;

2) вычислить коэффициент асимметрии (КА) для силы рук по формуле:

Анализируя полученные данные, сравнить их со среднестатистически­ми значениями.

В табл. 2.17-2.19 представлены возрастные стандарты показателей мы­шечной силы, опубликованные разными авторами.

Таблица 2.17. Сила рук подростков 14-17 лет


МЕТОДЫ ИЗУЧЕНИЯ ПСИХОМОТОРИКИ ПРИ КОМПЛЕКСНОМ ИССЛЕДОВАНИИ ЧЕЛОВЕКА

38 и более

59 и более

Примечание. Данные получены Н. А. Грищенко.

Таблица 2.18. Динамометрия правой руки (в килограммах), средние показатели

Аст , Лет

Примечание. Данные представлены Рудиком.

Таблица 2.19. Возрастные изменения ручной силы у мужчин и женщин

Возраст , Лет

Количество

Сила правой

Сила левой

Количество

Сила правой

Сила левой

Испытуемых

Руки

Руки

Испытуемых


ГЛАВА 2. МЕТОДЫ ИССЛЕДОВАНИЯ ПСИХОМОТОРНОЙ ОРГАНИЗАЦИИ

Окончание табл. 2.19

Возраст , Лет

Количество

Сила правой

Сила левой

Количество

Сила правой

Сила левой

Испытуемых

Испытуемых

51 и старше

Примечание. Данные представлены Е. П. Ильиным.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!