Упражнения. Питание. Диеты. Тренировки. Спорт

секреты успешного фитнеса. Спортивная генетика

Спортивная генетика

Спорти́вная гене́тика - направление генетики , изучающее геном человека в аспекте физической (в частности - спортивной) деятельности. Впервые термин «генетика физической (или двигательной) деятельности» (Genetics of Fitness and Physical Performance) был предложен Клодом Бушаром в году. Тогда он опубликовал два обзора в одном номере журнала «Exercise and Sport Science reviews» , где представил обобщающие факты, во-первых, об индивидуальных различиях в ответ на физические нагрузки, во-вторых, о наследуемости многих физических, физиологических и биохимических качествах, вовлеченных в процесс физической деятельности.

Роль отечественных школ в развитии спортивной генетики

Ещё задолго до официального становления спортивной генетики, на базе ВНИИФК в 1972 году возникла Лаборатория спортивной антропологии (впоследствии названная «Лаборатория спортивной антропологии, морфологии и генетики») по инициативе Э.Г. Мартиросова , который и возглавлял её в течение последующих 20 лет. Он основал направление и создал школу спортивной антропологии. Основные направления исследований лаборатории традиционно были связаны с разработкой медико-биологических критериев и методов диагностики одарённости в системе отбора и подготовки перспективных спортсменов.

В последние годы в этой лаборатории в поиске генетических маркеров функционального статуса широко проводятся дерматоглифические исследования [Абрамова, 1995].

В целом в стране развивалась генетика физической деятельности без использования молекулярных методов, а генетическими маркерами предрасположенности к физической деятельности считались группы крови, тип телосложения, дерматоглифы, состав мышечных волокон, тип сенсомоторных реакций и другие фенотипические признаки [Никитюк, 1978; Москатова, 1992; Сергиенко; 1990; Абрамова; 1995]. Наследуемость физических качеств также активно изучалась с использованием близнецовых методов [Шварц, 1991].

Совершенно новой эпохой в российской истории генетики физической деятельности можно считать конец 90-х годов , когда возникла возможность применения молекулярно-генетических методов в выявлении генетической предрасположенности к выполнению физических нагрузок различной продолжительности и направленности. В 1999 году петербургские учёные из (обеспечение лабораторной деятельности) и СПб НИИ физической культуры (обеспечение исследуемыми выборками) приступили к совместным исследованиям по выявлению ассоциации полиморфизма гена ACE с физической работоспособностью у высококвалифицированных спортсменов.

В 2001 году в секторе биохимии спорта СПбНИИФК под руководством проф. В.А. Рогозкина была организована первая в России специализированная лаборатория спортивной генетики, использующая молекулярные методы, а в 2003 году произошло официальное формирование группы спортивной генетики.

В России спортивной генетикой также занимаются в лаборатории молекулярной генетики Казанского государственного медицинского университета (Казань; руководитель - д.м.н. Ахметов И.И.), на кафедре генетики Башкирского государственного педагогического университета (Уфа; руководитель - д.б.н. Горбунова В.Ю.), а также в НИИ олимпийского спорта Уральского государственного университета физической культуры (Челябинск; руководитель - д.б.н. Дятлов Д.А.).

Примечания

Ссылки

  • 1. Карта генов человека, ассоциированных с физической активностью
  • 3. Обзор "Молекулярная генетика спорта: состояние и перспективы"

Литература

  • 1. Genetics of Fitness and Physical Performance. Bouchard C., Malina R.M., Perusse L. 1997. 408 pp.
  • 2. Спортивная генетика. Учебное пособие. Сологуб Е.Б., Таймазов В.А. 2000. 127 с.
  • 3. Основы спортивной генетики. Учебное пособие. Сергиенко Л.П. 2004. 631 с.
  • 4. Genetics Primer for Exercise Science and Health. Roth S.M. 2007. 192 pp.
  • 5. Молекулярная генетика спорта. Монография. Ахметов И.И. М.: Советский спорт, 2009. 268 с.
  • 6. Genetic and Molecular Aspects of Sports Performance. Bouchard C. & Hoffman E.P. 2011. 424 pp.
  • 7. Exercise Genomics. Pescatello L.S. & Roth S.M. 2011. 267 pp.

Существуют гены, улучшающие результаты аэробных упражнений и влияющие на мышечную силу, во время тренировок, на размер и форму вашего тела. Чтобы понять, как именно гены влияют на ваши спортивные достижения, обратимся к профессору Мэрилендского университета Стивену Роту (Stephen Roth).

Когда важны гены

На что гены влияют больше - на физическую или психологическую выносливость? Стивен Рот считает, что ДНК важна для обоих процессов. Кроме того, стоит поставить вопрос по-другому: велико ли различие между вами и другими людьми и зависит ли оно от генов? Идея, которая лежит в основе этого, называется наследственностью.

HealthGauge/Flickr.com

Оценка наследственности всегда немного груба, потому что основывается на результатах исследования конкретной группы населения. Если в сферу интересов учёных входят только люди, которые ведут сидячий образ жизни и занимаются кардиоупражнениями, то разница в результатах зависит в основном от ДНК. Если же включить в фокус-группу профессиональных атлетов, то гены играют меньшую роль - всего лишь 50%.

Вот почему вам не нужно расстраиваться, если обнаружите «плохие» гены в своём роду. Некоторые характеристики тела действительно передаются из поколения в поколение, но даже это можно изменить.

Например, ожирение передаётся в 70% случаев, то есть гены в этом вопросе играют большую роль. Но все мы знаем, что правильная и активные тренировки сделают своё благородное дело.

Вот некоторые данные о наследовании спортивных способностей. Чем выше процентное значение, тем больше вы можете обвинять гены в собственных неудачах.

  • Аэробные упражнения - 40–50%.
  • Силовые упражнения - 50–60%.
  • Выносливость - 45%.
  • Высокий рост - 80%.
  • Способности к спорту как таковому - 66%.

Способности к тренировкам тоже важны и тоже обуславливаются генами. К примеру, если вы и ваш приятель решили следовать одной , вероятно, что один из вас будет сильнее другого к концу серии занятий.

Есть ещё один фактор, более сложный для понимания, однако дающий всем нам надежду на лучшее. Способность к спорту - штука многокомпонентная. Возможно, вы не можете бегать так же быстро, как ваши товарищи по футбольной команде, зато обладаете невероятным зрением и сильным ударом. Или, может, вам тяжело заниматься силовыми нагрузками, но у вас длинные ноги, которые делают вас крутым бегуном.

Не сдавайтесь в любом случае. Даже если обнаружили у себя парочку «слабых» генов.

Насколько важны гены

Большинство из нас не пытается Усэйна Болта (Usain Bolt) , поэтому для них гены имеют меньшее значение, чем для профессиональных атлетов.

Мы имеем в виду, что обычным людям проще, ведь планка не настолько высока. Большинство из нас хочет не пробежать марафон первым, а просто дойти до финиша. Ведь каждый может тренироваться с такой целью. Или мы хотим победить команду противника в очередном футбольном (баскетбольном, хоккейном, квиддичном) матче, но не выйти на первое место в профессиональной лиге. Тем, кто занимается спортом в свободное время, очередное достижение приносит удовольствие, желание достичь большего и разработать эффективную стратегию дальнейших действий.

Генетическое преимущество одной способности над другой невероятно мало. Но эта крошечная деталь отделяет золотого призёра Олимпийских игр от диванного болельщика, просматривающего все матчи дома.

Почему нет простого генетического теста

Генетика - сложная наука. Из 20 000 человеческих генов, как указывает Стивен Рот, лишь сотни были изучены и только несколько десятков исследованы с точки зрения их влияния на результаты тренировок.


Richard Giles/Flickr.com

Исследование 2009 года свидетельствует: можно предсказать рост человека, если измерить рост его родителей и исследовать 54 гена высоты.

Существуют генетические тесты, которые призваны оценить способности человека к спорту, однако их информативность ставится под сомнение. Можно выявить, к примеру, ген под названием ACE. Некоторые его версии ассоциируются с талантом к аэробным упражнениям и выносливостью спортсменов.

Но полученные данные о генах применить на практике нельзя. Стивен Рот говорит, что ни один из этих тестов не может считаться объективным. Возможно, он покажет 1–2% существующего положения дел.

На основе таких генетических тестов вам могут посоветовать конкретные виды спорта, но наука - это не то, на что нужно полагаться в своём выборе.

Стивен Рот также считает, что проводить подобные генетические тесты для детей нельзя. Их результаты говорят очень мало о таланте , зато родители могут взять их на вооружение и заставлять своё чадо метаться из секции в секцию, настаивать на достижении невероятно высоких результатов. Делать это, основываясь на анализе нескольких генов, глупо.

Как узнать, к чему есть способности

Итак, тесты нам не помогут. Как же определить, к какому виду спорта вы имеете склонность?

Лучше (и проще) посмотреть на свою семью и собственный опыт.

Например, если ваши родители достигали впечатляющих результатов в беге или , вам тоже стоит попробовать эти виды спорта.

Или же, допустим, вы несколько лет тренируетесь, чтобы пробежать марафон. Но длинные дистанции вам даются настолько плохо, что вы до сих пор не смогли достичь поставленной цели. Зато на коротких вы чувствуете себя как рыба в воде. Измените расписание, займитесь тем, к чему у вас есть способности. Но не спешите обвинять гены во всех своих бедах. Возможно, вам стоит тренироваться немного упорнее.

Избегайте выгорания, не переусердствуйте со спортом. Такое часто случается с профессиональными спортсменами.

Каковы бы ни были ваши гены, вы всегда можете подобрать что-то для себя и заниматься спортом успешно.

«Центр генетических исследований» рад предложить новую услугу: спортивный генетический паспорт.
ДНК тест проводится врачом-генетиком в Лаборатории-партнере (Россия). Срок проведения ДНК анализа: 2 недели с момента получения образцов Лабораторией.

Что из себя представляет спортивный генетический паспорт:
Существует комплекс генов, определяющих предрасположенность к различным видам спорта , и риски для здоровья связанные с физическими нагрузками.
Данный комплекс состоит из 25 генов и позволяет определить возможности достижения высоких спортивных результатов без вреда для здоровья.
В состав комплекса входят:
1. Генетические маркеры предрасположенности к определенным видам спорта:
- гены, ассоциированные с преобладанием «быстрых» и «медленных» мышечных волокон
- гены, отвечающие за метаболизм инсулина и энергетический обмен в мышцах
- гены, отвечающие за снабжение мышц кислородом, устойчивость к гипоксии
- гены костной системы (обмен кальция)

2. Риски для здоровья связанные с физической работой. Позволяют оценить риск развития сердечно-сосудистых осложнений при высоких нагрузках – кардиомиопатия, риск внезапной смерти, артериальная гипертензия, тромбоэмболические осложнения при травмах.

3. Гены, отвечающие за обмен веществ (рацион питания, энергетические пищевые добавки, лекарства, риск спаечных процессов).
Исследование позволит дать рекомендации по выбору спортивного профиля, комбинации физических нагрузок. Определит характер необходимого медицинского наблюдения, особенности диеты, рекомендации по реабилитации при возникновении травм.

Спортивная Генетика. Для чего это нужно?
Определение генетической предрасположенности к проявлению физических качеств человека играет важную роль во многих сферах профессиональной подготовки специалистов (спортсмены, спасатели, пожарные, космонавты, сотрудники специальных подразделений Министерства обороны, Министерства внутренних дел, Федеральной службы безопасности и других ведомств).

Профессиональным спортсменам
Наиболее ярко это проявляется в спорте и именно поэтому изучение генов отвечающих за формирование, развитие и проявление физических качеств, целесообразно изучать на спортсменах различных специализаций. Именно у них, в силу специфических особенностей энергетического обмена в организме при выполнении различных по интенсивности и длительности физических нагрузок, можно с большой долей вероятности выявить генетические детерминанты, регулирующие этот процесс.

Главным преимуществом нашего ДНК тестирования является выявления наследственной предрасположенности человека к двигательной деятельности. Что дает высокую информативность при оценке потенциала развития физических качеств и возможность осуществления ранней диагностики. К отличительным свойствам такой диагностики также следует отнести возможность определения наследственной предрасположенности к развитию профессиональных патологий – факторов, лимитирующих физическую работоспособность человека и ухудшающих его качество жизни.

Наличие функционально значимых ДНК-полиморфизмов в генах, участвующих в функционировании сердечно-сосудистой системы и опорно-двигательного аппарата, предполагает выявление их взаимосвязи с физическими качествами человека, развивающимися в онтогенезе под значительным влиянием среды. Установление ассоциаций полиморфизмов данных генов с предрасположенностью к выполнению физических упражнений различной длительности и интенсивности, а также с фенотипами, значимыми в условиях спортивной деятельности, позволит разработать систему критериев прогностической оценки физических способностей человека.

Таким образом, внедрение молекулярно-генетических методов в практику профессионального отбора может существенно повысить прогностические возможности, улучшить профессиональную ориентацию в разных сферах деятельности человека и сохранить его здоровье.

Как выбрать вид спорта для ребенка?
Занятия спортом просто необходимы любому здоровому человеку. Понимая это, вы хотите отдать ребенка в спортивную секцию. Но не знаете, какой вид спорта выбрать для вашего ребенка? В какую секцию его отдать?

Для начала давайте разберемся с тем, к какому виду спорта ваш ребенок предрасположен генетически. Совсем недавно появилась возможность не терять драгоценное время, «пробуя» на ребенке различные секции, а сделать генетический анализ на предрасположенность к определенному виду спорта, тем самым сэкономив большое количество времени и достигнув больших успехов с порте.

Генетики доказали, что есть прямая зависимость уровня артериального давления от работы некоторых генов. Если человек, обладающий геном “повышенного давления”, получит высокую дозу нагрузки после перерыва, то резко возрастает вероятность инфаркта миокарда. С другой стороны, такие люди быстрее восстанавливаются при небольших и регулярных нагрузках. Наращивание мышечной массы также находиться в прямой зависимости от генов – некоторым из нас для «накачки мышц» достаточно нескольких тренировок, другим нужно много и долго тренироваться. Все это обусловлено Вашей генетикой.

Образец, необходимый для анализа ДНК:
Кровь из вены. или

Влияние генов на спортивные результаты
У каждого человека есть определенные генетические задатки, которые влияют на его комплекцию, тип телосложения, способность к занятию различными видами спорта, предрасположенность к типу нагрузки. Природа наделила каждого из нас индивидуальностью, игнорирование которой не ведет к положительному результату.
Например, представьте себе спортсмена, который занимается тяжелой атлетикой (поднятие штанги) и велосипедиста, который тренируется на длинных дистанциях. А теперь попробуйте мысленно поменять их местами. Как думаете, будет легковесный велосипедист с развитой выносливостью успешен в поднятии тяжелой штанги? На самом деле, возможно, что и будет. Излюбленная фраза наших экспертов: «Генетика – не приговор»! Даже балерина может начать поднимать штангу. Но, это будет сделать гораздо сложнее, чем развиваться в той сфере, к которой человек генетически расположен. Более того, это может быть даже опасно для здоровья. А стоит ли идти против природы?

Какие гены отвечают за способности в спорте?

Существуют два гена ADRB2 и ADRB3 .Они помогают определить какая интенсивность тренировок будет эффективна для их владельца. Эти гены отвечают за скорость превращение жировых запасов в энергию. На основе их анализа подбирается наиболее подходящий для человека тип тренировочной зоны (есть четыре разных зоны).Существует такой показатель физической активности – индекс MET. Это соотношение уровня метаболизма человека во время физической активности к уровню метаболизма в состоянии покоя. Чем сильнее работает тело во время нагрузки, тем больше оно тратит энергии и тем выше индекс MET. У каждого вида физической нагрузки есть свой индекс MET. Например, у гимнастики – 8,0, у плавания -6,0, у ходьбы – 2,5. Изучение генов ADRB2 и ADRB3 поможет определить какой индекс MET должен быть у тренировок для потери, сохранения и набора массы.Гены AMDP1 и IL6 отвечают за скорость восстановления организма после физических нагрузок и скорость утомляемости на тренировках. Их анализ позволит установить с какой динамикой человеку следует проводить тренировки и какой продолжительности они должны быть. Гармонично подобранная программа тренировок позволит сохранять здоровье и добиться наиболее быстрых и внушительных результатов в спорте.

Гены ACT и AGT расскажут о склонности человека к повышению артериального давления после тренировок. Если такой риск высок, то за этим показателем нужно тщательно следить. Возможно, чрезмерными для себя физическими нагрузками человек сможет добиться рельефных мышц, но при этом, нанесет вред сердечно-сосудистой системе. В результате, это может повлечь серьезные заболевания сердца и сосудов.

Г е ны PPARA PGC1A ACE PPARG2 , в совокупности, дадут ответ на вопрос - к чему человек наиболее расположен: к мышечной силе или к выносливости. На основе этих данных можно подобрать наиболее комфортный и эффективный для человека вид спорта.

Анализ «спортивных генов» необходим для того, чтобы составить пациенту (клиенту) индивидуальную программу тренировок, которая в совокупности с подобранной программой питания, даст максимальный результат. Если человек хочет похудеть, то самое правильное решение - делать это с учетом его генетики. Такой подход даст возможность не только добиться эффекта быстрее и закрепить результат, но и повысить капитал здоровья!

Наш ДНК-тест «Диетология» включает в себя как анализ генов, отвечающих за питание, метаболизм, усвоение организмом различных веществ, так и исследование всех вышеперечисленных «спортивных генов». Таким образом, врач имеет возможность увидеть наиболее полную картину. Например, в ДНК-тесте «Диетология» мы анализируем г ены SLC30A8, KCNJ11, FTO, TCF7L2, IL6. Они отвечают за риск развития сахарного диабета второго типа и метаболического синдрома. Людям с повышенным риском в этой категории очень важно снижать массу тела до нормального уровня и увеличивать физические нагрузки (это снижает риск развития болезни в 2 раза).
ДНК-тест «Диетология» дает врачу возможность одновременно составить генетическую программу питания и программу тренировок по запросу клиента (похудение, поддержание веса, набор мышечной массы), учесть все его особенности, сохранить здоровье и добиться наилучшего физического результата!



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!