Упражнения. Питание. Диеты. Тренировки. Спорт

Энергообеспечение организма человека. Механизмы энергообеспечения мышечной деятельности. Алактатная система энергообеспечения

Энергодающим субстратом для обеспечения основной функции мышечного волокна - его сокращения - является аденозинтрифосфорная кислота - АТФ.

Энергообеспечение по способам реализации условно делят на анаэробное (алактатно-лактатное) и аэробное.

Эти процессы могут быть представлены следующим образом:

Анаэробная зона энергообеспечения:

АДФ + Фосфат + свободная энергия <=> АТФ

Фосфокреатин + АДФ <=> креатин + АТФ

2 АДФ <=> АМФ + АТФ

Гликоген (глюкоза) + Фосфат + АДФ <=> лактат + АТФ

Аэробная зона энергообеспечения:

Гликоген (глюкоза), жирные кислоты + Фосфат +О2С02 + Н2 0 + АТФ

Источники энергии -- это фосфагены, глюкоза, гликоген, свободные жирные кислоты, кислород.

Введение АТФ извне в достаточных дозах невозможно (обратное является широко распространенным заблуждением), следовательно, необходимо создать условия для образования повышенного количества эндогенного АТФ. На это направлена тренировка - сдвиг метаболических процессов в сторону образования АТФ, а также обеспечение ингредиентами.

Скорость накопления и расхода энергии значительно различаются в зависимости от функционального состояния спортсмена и вида спорта. Определенный вклад в процесс энергообеспечения, его коррекцию, возможен со стороны фармакологии.

В начале 70-х годов было доказано, что сокращение ишемизированного миокарда прекращается при исчерпании клеточных запасов фосфокреатина (ФК), несмотря на то, что в клетках остается неизрасходованным около 90% АТФ. Эти данные говорят о том, что АТФ неравномерно распределена внутри клетки. Доступным является не весь АТФ, содержащийся в мышечной клетке, а лишь его небольшая часть, локализованная в миофибриллах. Результаты исследований, выполненных в последующие годы, показали, что связь между внутриклеточными пулами АТФ осуществляют ФК и изоферменты креатинкиназы. В нормальных условиях молекула АТФ, выведенная из митохондрии, передает свою энергию креатину, который под воздействием митохондриального изофермента креатинкиназы трансформируется в ФК. Последний мигрирует к местам локальных креатинки-назных реакций (сарколемма, миофибриллы, саркоплазматический ретикулум), где другие изоферменты креатинкиназы обеспечивают ресинтез АТФ из ФК и АДФ.

Освобождающийся при этом креатин возвращается в митохондрию, а энергия АТФ используется по назначению, в том числе и для мышечного сокращения (см. схему). Скорость транспорта энергии внутри клетки по фосфокреатиновому пути значительно превосходит скорость диффузии АТФ в цитоплазме. Именно поэтому снижение содержания ФК в клетке и приводит к депрессии сократимости даже при сохранении значительного внутриклеточного запаса основного энергетического субстрата - АТФ.

По современным представлениям, физиологическая роль ФК состоит в эффективном обеспечении внутриклеточного транспорта энергии от мест ее производства к местам использования.

В аэробных условиях основными субстратами для синтеза АТФ являются свободные жирные кислоты, глюкоза и лактат, метаболизм которых в норме обеспечивает продукцию около 90% общего количества АТФ. В результате ряда последовательных каталитических реакций из субстратов образуется ацетил-коэнзим А. Внутри митохондрий в ходе цикла трикарбоновых кислот (цикла Кребса) происходит расщепление ацетил-коэнзима А до углекислоты и атомов водорода. Последние переносятся на цепь транспорта электронов (дыхательную цепь) и используются для восстановления молекулярного кислорода до воды. Энергия, образующаяся при переносе электронов по дыхательной цепи, в результате окислительного фосфорилирования трансформируется в энергию АТФ.

Уменьшение доставки кислорода к мышцам влечет за собой быстрый распад АТФ до АДФ и АМФ, затем распад АМФ до аденозина, ксантина и гипоксантина. Нуклеотиды через саркоплазматическую мембрану выходят в межклеточное пространство, что делает невозможным ресинтез АТФ.

В условиях гипоксии интенсифицируется анаэробный процесс синтеза АТФ, основным субстратом для которого служит гликоген. Однако в ходе анаэробного окисления образуется значительно меньше молекул АТФ, чем при аэробном окислении субстратов метаболизма. Энергия АТФ, синтезируемого в анаэробных условиях, оказывается недостаточной не только для обеспечения сократительной функции миокарда, но и для поддержания градиентов ионов в клетках. Уменьшение содержания АТФ сопровождается опережающим снижением содержания ФК.

Активизация анаэробного гликолиза влечет за собой накопление лактата и развитие ацидоза. Следствием дефицита макроэргических фосфатов и внутриклеточного ацидоза является нарушение АТФ-зависимых механизмов ионного транспорта, ответственных за удаление ионов кальция из клеток. Накопление ионов кальция в митоходриях приводит к разобщению окислительного фосфорилирования и усилению дефицита энергии. Увеличение концентрации ионов кальция в саркоплазме при недостатке АТФ способствует образованию прочных актиномиозиновых мостиков, что препятствует расслаблению миофибрилл.

Дефицит АТФ и избыток ионов кальция в сочетании с повышением продукции и увеличением содержания в мышце катехоламинов стимулирует «липидную триаду». Развитие «липидной триады» вызывает деструкцию липидного бислоя клеточных мембран. Все это приводит к контрактуре миофибрилл и их разрушению. Роль «ловушки ионов кальция» выполняют неорганический фосфат и другие анионы, накапливающиеся в клетке при гипоксии.

Фармобеспечение по зонам осуществляется следующим образом:

В анаэробной (алактатной ) зоне для обеспечения скоростной, максимально мощной, непродолжительной работы (несколько секунд), вводятся фосфагены, в частности неотон (см. главу «Макроэрги (фосфагены)»). фармакологический спорт допинг реабилитация

В анаэробной (лактатной ) зоне с накоплением молочной кислоты при работе субмаксимальной мощности организм также должен быть обеспечен фосфокреатином, максимально обеспечен возможностью полностью утилизировать кислород, терпеть кислородную задолженность (антигипок-санты), утилизировать «отходы» (см. главу «Коррекция лактатных возможностей организма»), а также иметь запасы гликогена и возможность пополнять в процессе работы углеводные запасы.

В аэробной (кислородной) зоне необходимо обеспечить: постоянное поступление углеводов в кровь, максимальное окисление жирных кислот (липотропные средства) и нейтрализацию образующихся при этом свободных радикалов (антиоксиданты), а также максимальное использование поступающего в организм кислорода (антигипоксанты).

В. Н. Селуянов
ПНИЛ, РГАФК, Москва

Соревновательная деятельность в борьбе продолжается 5-9 мин. и завершается, как правило, предельным утомлением спортсмена. В циклических видах спорта такая деятельность может быть сопоставлена с соревновательной деятельностью бегуна на 1500-3000 м. Поскольку этот вид деятельности хорошо изучен в физиологии, то достаточно легко найти экспериментальные данные и физиологические механизмы, объясняющие результативность такой деятельности.

Например, возьмем данные B. Saltin et al. (Onset of exercise // Simposium. — Toulouse. — 1972. — P. 63-76.) В этой работе представлены данные об изменении АТФ, КрФ, гликогена, лактата в мышце (латеральной головке четырехглавой мышцы бедра), и лактата в крови при выполнении педалирования на велоэргометре с мощностью МПК.

Механизм энергообеспечения такой работы может быть описан следующим образом. В начале, для преодоления внешнего сопротивления, которое составляет около 40 % от МАМ, должны быть рекрутировано около 40 % МВ. Эти мышечные волокна являются окислительными. В них начинается трата молекул АТФ и ресинтез их за счет энергии молекул КрФ. Свободные Кр и неорганический фосфат активизируют деятельность гликолиза и окисления жиров одновременно. Через 10-15 с после начала упражнения запасы АТФ и КрФ в рекрутированных МВ значительно снижаются, поэтому мощность работы этих мышечных волокон падает в 2-3 раза. Это заставляет спортсмена рекрутировать новые МВ в количестве, необходимом для поддержания заданной мощности. Следовательно, следующие 10-15 с работа поддерживается за счет аэробных процессов в ранее рекрутированных МВ и энергии АТФ и КрФ в новых МВ. Затем, описанный механизм рекрутирования МВ, продолжает развиваться. Начинают подключаться к работе гликолитические МВ, которые после исчерпания запасов АТФ и КрФ начинают работать в анаэробном гликолизе с образованием лактата и ионов водорода. По данным B. Saltin et al. (1972) интенсивный рост концентрации лактата в мышце начинается после минуты работы. Продолжительность работы рекрутированных гликолитических МВ не превышает одной минуты, поскольку закисление МВ приводит к потере силы и мощности их функционирования. Поэтому работа с заданной мощностью будет продолжаться до тех пор, пока есть что рекрутировать. В момент исчерпания всех МВ заданная мощность уже не может больше поддерживаться. В этот момент мышцы предельно закисляются, потребление кислорода, ЧСС и легочная вентиляция достигаю также предельных величин. Испытуемый испытывает тяжелое физиологическое состояние и отказывается от продолжения работы. Если работа продолжалась 6 мин., то за это время потребление кислорода мышцами составит: V(О 2) АнП × 6 мин. = 4 л/мин х 6 мин. = 24 л/мин. Если мощность работы составила 400 Вт или 5,3 л О 2 /мин, то кислородный запрос упражнения составит 5,3 × 6 мин. = 32 л О 2 . Дефицит кислорода составил 8 л, из него 2-3 л приходится на АТФ и КрФ, а на анаэробный гликолиз 5-6 л.

Следовательно, основным механизмом энергообеспечения является аэробный (24/32 × 100 % = 75 %, алактатный 2/32 × 100 % = 6,3 %, анаэробный гликолиз 6/32 × 100 % = 18,7 %). Эта оценка в целом согласуется с данными многих авторов.

Заметим также, что с ростом потребления кислорода на уровне АнП, когда он приближется по своей величине к МПК, наблюдается увеличение продолжительности работы на уровне МПК, снижается степень закисления мышц и крови. В целом вклад в запрос кислорода аэробных процессов растет и может достигать 90 %.

Отсюда следует приоритет в развитии аэробного механизма энергообеспечения у спортсменов, выполняющих предельную мышечную работу в пределах 5-9 мин.

Единственным специалистом, результаты которого вошли в противоречие с общеустановленными представлениями является В. В. Шиян (1997). На основании исследования соревновательной деятельности различных видов борьбы он пришел к выводу о приоритете анаэробного механизма энергообеспечения.

На основе анализа биоэнергетических характеристик у спортсменов различных видов спорта им было установлено, что «у борцов существенно меньше показатели бионергетических функций, чем у представителей других видов спорта». Например, борцы имеют аэробную мощность (МПК) 58 мл/мин/кг, тогда как у бегунов на дистанцию 800 м и более длинные более 70 мл/мин/кг. Автор предположил, что отставание в развитии борцов связано с отставанием в теории и методике подготовки высококвалифицированных борцов по сравнению с другими видами спорта.

Эта аргументация поверхностная, а обнаруженное явление легко объяснить, если придерживаться концепции о периферическом лимитирующем факторе МПК. В этом случае потребление кислорода определяется массой митохондрий потребляющих кислород в активных мышцах ног, сердце и дыхательных мышц. При педалировании на велоэргометре основную работу выполняют только мышцы ног, поэтому при делении на массу тела, в которую входят у борцов существенно гипертрофированные и массивные мышцы спины, живота и рук, при равных абсолютных величинах МПК относительные величины МПК у борцов окажутся ниже при сравнении с представителями других видов спорта без существенной гипертрофии мышц пояса верхних конечностей.

Другим аргументом В. В. Шияна стали данные факторного анализа, из которых следовало, что вклад в общую дисперсию аэробных способностей борцов составил только 10 %, а основная дисперсия пришлась на анаэробные возможности — более 90 %. Следовательно, «подготовка борца высокой квалификации (особенно этап подготовки к соревнованиям), должна быть направлена на максимальное развитие преимущественно анаэробноых возможностей спортсменов». Такая аргументация не выдерживает следующей критики. При изучении однородных выборок спортсменов наиболее важные для достижения высоких спортивных результатов показатели у всех спортсменов должны быть примерно равными, следовательно, должны мало варьировать. Показатели, которые существенно варьируют, не имеют принципиального значения для данного вида спорта. Из этого следует, что именно анаэробные показатели не имеют принципиального значения при оценке уровня подготовленности борцов высокой квалификации.

Подтверждение нашей аргументации можно найти при анализе соревновательной деятельности борцов. Например, по данным В. В. Шияна (1997) активность победителей и надежность технических действий выше чем у побежденных на 30-50 %, а закисление у победителей либо меньше, либо статистически достоверно не различались (рН = 7,158, б = 0,077). Из этого следует, что более высокая активность борцов победителей определялась их более высокой аэробной подготовленностью.

Другим важным аргументом в пользу важности аэробной подготовленности борцов являются данные о тестировании и норме специальной выносливости борцов. В. В. Шиян (1997) использовал в своих исследованиях тест — педалирование на велоэргометре, три раза по одной минуте предельной нагрузки. После тестирования на 3-5 мин. бралась кровь из мочки уха, для определения рН. По данным тестирования по формуле определяли гликолитическую эффективность:

АнГЭ = ΣАi/(100 х ΔpH)

Где ΣАi сумма трех работ, выполненных в одноминутных предельных упражнениях, ΔpH — изменение степени закисления крови по данным анализа крови до и после тестирования.

Аналогичная формула использовалась для оценки специальной выносливости (коэффициент специальной выносливости):

КСВ = 100/(Σti х ΔpH),

Σti — сумма трех работ, выполненных в виде серий по 15 бросков чучела, с.

Анализ этих уравнений показывает, что при равном объеме выполненной работы уменьшение степени закисления крови ведет к росту специальной выносливости. Следовательно, показатели АнГЭ и КСВ характеризуют уровень аэробных возможностей спортсмена. К сожалению результаты, получаемые по этим формулам, получили некорректную интерпретацию. В. В. Шиян (1997) предположил, что одноминутная работа связана преимущественно с анаэробным механизмом энергообеспечения — анаэробным гликолизом, поэтому показатель КСВ должен характеризовать анаэробную гликолитическую мощность. При такой интерпретации ведущим фактором роста специальной выносливости становится анаэробный гликолиз.

Вывод

Соревновательная деятельность в борьбе самбо и дзюдо, продолжающаяся около 5 мин., требует энергообеспечения преимущественно за счет аэробного механизма, который необходим как для поддержания высокой интенсивности борьбы, так и для случаев проведения высокоинтенсивных двигательных действий связанных с рекрутированием гликолитических мышечных волокон, с образованием молочной кислоты, здесь аэробные возможности необходимы для устранения лактата и ионов водорода в митохондриях окислительных мышечных волокнах активных скелетных мышц, сердце и дыхательной мускулатуре в моменты снижения интенсивности двигательных действий в схватке.

Литература

В. В. Шиян Совершенствование специальной выносливости. — М.: ФОН, 1997. — 166 с.

B. Saltin et al. Onset of exercise //Simposium. — Toulouse. — 1972. — P. 63-76.

Любое двигательное действие осуществляется с помощью мышечного сокращения. Но для того, чтобы осуществить двигательное действие, помимо фазы сокращения, необходимо наличие фазы расслабления. Для последовательной смены фаз необходима энергия, именно о ней мы и поговорим в этой статье.

Для начала поверхностно разберем процесс произвольного мышечного сокращения. Этот процесс начинается с формирования двигательного импульса (потенциала действия) в коре головного мозга. Затем этот импульс двигаясь по нейронам достигает «границы» мышечной ткани, преодолевая нервно-мышечный синапс (место перехода двигательного импульса от нервной ткани к мышечной), вызывает серию реакций, заканчивающихся сокращением мышечной ткани. Ключевое место в этом процессе занимает молекула АТФ (аденозинтрифосфорная кислота).
При гидролизе (химическая реакция распада вещества при взаимодействии с водой) АТФ, энергия химической связи преобразуется в механическую энергию, позволяя актин-миозиновому комплексу (ключевой элемент мышечной системы, непосредственно способствующий мышечному сокращению) совершить механическую работу (перемещение).
Для мышечного расслабления, так же необходима энергия гидролиза АТФ, для разрыва связи актин-миозинового комплекса.

Теперь непосредственно поговорим о молекуле АТФ. Для продолжительного осуществления мышечной деятельности необходимо
огромное количество молекул АТФ, мы уже знаем, что эти молекулы занимают центральное место в мышечной деятельности. И тут мы сталкиваемся с главной проблемой энергетического обеспечения – очень малым запасом АТФ в мышечной ткани, около 5 ммоль/кг, этого количества «топлива» хватит на обеспечение работы продолжительностью до 2 секунд.

Для более продолжительной работы, нам необходимо постоянно восполнять запасы АТФ, процесс восполнения запасов АТФ называется ресинтезом АТФ и протекает с потреблением энергии.

Существует три пути ресинтеза АТФ: а) аэробный; б) креатинфосфатный (анаэробный-алактатный); в) гликолитический (анаэробный-лактатный).

Все пути ресинтеза АТФ (энергообеспечения), можно описать количественными критериями: а) максимальная мощность – наибольшее
количество АТФ, которое может образоваться в единицу времени данным путем ресинтеза, измеряется в кал/мин*кг мышечной ткани или Дж/мин*кг мышечной ткани; б) время развертывания – минимальное время, необходимое для выхода данного пути ресинтеза АТФ на свою максимальную мощность, измеряется в единицах времени (секундах, минутах); в) время удержания максимальной мощности – продолжительность функционирования пути ресинтеза АТФ на максимальной мощности, измеряется в единицах времени (секунды, минуты, часы); г) метаболическая емкость – суммарное количество АТФ, произведенное конкретным путем ресинтеза.

Краткая характеристика каждого из путей энергообеспечения (подробные механизмы протекания каждого из путей ресинтеза АТФ в данной статье описываться не будут, т.к. для этого придется использовать много специализированных понятий, что затруднит восприятие материала):


  • 1. Аэробный путь ресинтеза АТФ (тканевое дыхание) – базовый путь ресинтеза АТФ, протекающий в митохондриях мышечных клеток. Для протекания данного пути ресинтеза необходимо наличие кислорода, поэтому он называется аэробным.
    В ходе тканевого
    дыхания от окисляемого вещества отнимается два атома водорода (2 протона и 2 электрона) и по дыхательной цепи передаются на молекулярный кислород (О2), доставляемый в мышцы по кровеносной системе, в результате чего возникает вода.
    Благодаря энергии, выделяющейся при образовании воды, происходит синтез АТФ из АДФ (аденозиндифосфат, возникает в результате гидролиза АТФ) и фосфорной кислоты (Н3РО4).
    На образовавшуюся молекулу воды приходится три молекулы АТФ (схема 1).


    Скорость протекания данного пути ресинтеза АТФ, зависит от содержания в мышечной клетке АДФ, являющийся активатором тканевого дыхания. В покое, когда в мышечных клетках почти нет АДФ, тканевое дыхание функционирует очень медленно.

    Данный путь ресинтеза АТФ характеризуется следующими количественными критериями:


    • а) максимальная мощность – 350-450 кал/мин*кг.
      Сравнивая этот показатель с показателями другимх путей ресинтеза АТФ, тканевое дыхание обладает самой низкой мощностью;
    • б) время развертывания – 3-4 минуты (у тренированных спортсменов может достигать 1 минуты). Это связано с необходимостью доставки
      кислорода в мышцу, для этого необходимо максимальное развертывание дыхательной системы, сердечно-сосудистой системы и системы крови;
    • в) время работы на максимальной мощности – десятки минут. Такое продолжительное время поддержания максимальной мощности объясняется тем, что предшественниками окисляемого вещества могут выступать и углеводы и жиры и даже
      аминокислоты;
    • г) метаболическая емкость – образуется огромное количество молекул АТФ, это возможно благодаря очень глубокому окислению веществ и длительному времени функционирования данного пути ресинтеза АТФ.
  • 2. Креатинфосфатный (анаэробный-алактатный) путь ресинтеза АТФ – путь ресинтеза АТФ, обеспечивающий мышцы энергией до выхода аэробного пути на максимальную мощность и при выполнении работы высокой мощности. Содержание креатинфосфата в
    мышечных клетках в состоянии покоя – 15-20 ммоль/кг.
    Креатинфосфат относится к группе так называемых макроэргических соединений, обладая огромной энергией химических связей. Еще
    одной важной характеристикой креатинфосфата является его высокое сродство к АДФ, как мы уже знаем, количество АДФ при физической работе возрастает. В результате химической реакции, остаток фосфорной кислоты с креатинфосфата переходит к АДФ,
    образуя АТФ и креатин (схема 2).


    Данный путь ресинтеза АТФ характеризуется следующими критериями:


    • а) максимальная мощность – 900-1100 кал/мин*кг. Это в три раза выше чем при аэробном ресинтезе. Такая высокая мощность обусловлена высокой активностью ферментов, обеспечивающих протекание данной химической реакции;
    • б) времяразвертывания – 1-2 секунды. Запаса АТФ в мышцах как раз хватает на это время. Такое быстрое развертывание объясняется механизмами регуляции данного пути ресинтеза АТФ, при достижении двигательным импульсом мышечной клетки, происходит высвобождение ионов Ca++ из своих депо, их концентрация в клетке увеличивается в 1000 раз, именно ионы Ca++ регулируют скорость протекания креатинкиназной реакции;
    • в) время работы с максимальной мощностью – до 10 секунд, это связано с небольшим исходным запасом креатинфосфата в мышцах и высокой скоростью его расходования;
    • г) метаболическая емкость – меньше чем у аэробного пути ресинтеза АТФ, это определяется малым временем функционирования с максимальной мощностью.


      Теперь затронем вопрос соотношения между тремя путями ресинтеза АТФ. Исходной переменной, от которой будет зависеть вовлеченность каждого из процессов энергообеспечения, выступает мощность выполняемой работы. Чем выше мощность работы, тем больше количества АТФ необходимо произвести в единицу времени. Самое большое количество АТФ в единицу времени производится в процессе креатинфосфатной реакции, ее показатель лежит в диапазоне от 900 до 1100 кал/мин*кг. На втором месте по этому показателю находится гликолитический механизм энергообеспечения, его показатель приблизительно равен 800 кал/мин*кг.

      Самым низким показателем максимальной мощности процесса энергообеспечения обладает аэробный механизм, примерно 400 кал/мин*кг. Энергообеспечение не может обеспечиваться исключительно одним из рассматриваемых механизмов в чистом виде, при работе любой мощности, все пути ресинтеза АТФ внося свой вклад в энергообеспечение, но в зависимости от мощности, один из
      механизмов является ведущим.
      Например, выполняя работу максимальной мощности, ведущим механизмом энергообеспечения будет выступать креатинфосфатный путь ресинтеза АТФ, как только будет исчерпан потенциал данного механизма энергообеспечения, нам придется снизить мощность выполняемой работы, либо прекратить ее выполнение.

      В качестве примера, хорошо иллюстрирующего вышесказанное, представьте, что вы хотите пробежать 3000 метров, удерживая максимальную скорость, вы вышли на стартовую линию и по сигналу стартового пистолета начали свой бег. На первых метрах дистанции, вы уверенно набираете скорость, энергетический запрос на выполнение данной работы возрастает.

      Набрав максимальную скорость, примерно к 60 метру, вы чувствуете, что бежать быстрее не получается и стараетесь удерживать максимальную скорость, в этот момент, ваш энергетический запрос стабилизировался, а механизмы энергообеспечения вышли на максимальную мощность.

      И вдруг, вы почувствовали, примерно на 110 метре дистанции, что вы больше не можете удерживать максимальную скорость, вы начинаете замедляться, именно в этот момент, вы попадаете в так называемую зону метаболического перехода, когда механизм энергообеспечения, прежде обеспечивающий поддержание максимальной мощности работы исчерпал свой ресурс, энергообеспечение «передается» следующему механизму, гликолитическому процессу, обладающего меньшей максимальной мощностью энергообеспечения.

      Спустя еще несколько минут, 2-3 минуты, вы заметите, что ваша скорость продолжает снижаться, энергообеспечение переходит в «руки» аэробного процесса. К концу дистанции, ведущим путем ресинтеза АТФ уже будет выступать аэробный механизм.
      В начале дистанции, развив максимальную скорость, энергообеспечение нашей работы, обеспечивалось креатинфосфатным путем ресинтеза АТФ, котрый обладает самым высоким уровнем максимальной мощности, а заканчивали дистанцию, используя аэробное энергообеспечение, обладающее наименьшей мощностью.

      В данном случае, мы не учитываем финишный рывок (спурт), который выполняется за счет креатинфосфатного пути, успеваюшего частично восстановить свой потенциал, пока мы находились в зоне аэробной работы. Схематично, вышесказанное можно представить следующим образом (схема 4).




      сектор 3 – место метаболического перехода между гликолитическим и аэробным энергообеспечением; штриховой линией обозначается суммарная выработка АТФ" alt=" Примечание:
      ось Х – время, с, мин (размерность не соблюдена);
      ось У – мощность энергопроизводства, кал/мин*кг;
      сектор 1 – место выхода креатинфосфатного пути энергообеспечения на максимальную мощность;
      сектор 2 – место метаболического перехода между креатинфосфатным и гликолитическим механизмами энергообеспечения;
      сектор 3 – место метаболического перехода между гликолитическим и аэробным энергообеспечением; штриховой линией обозначается суммарная выработка АТФ" src="https://4sport.ua/_upl/2/1445/4_1444905645.jpg">
      Примечание:
      ось Х – время, с, мин (размерность не соблюдена);
      ось У – мощность энергопроизводства, кал/мин*кг;
      сектор 1 – место выхода креатинфосфатного пути энергообеспечения на максимальную мощность;
      сектор 2 – место метаболического перехода между креатинфосфатным и гликолитическим механизмами энергообеспечения;
      сектор 3 – место метаболического перехода между гликолитическим и аэробным энергообеспечением; штриховой линией обозначается суммарная выработка АТФ

      Теперь, когда мы имеем общее представление об энергообеспечении мышечной деятельности, можно осуществить перенос общих знаний в рамки спортивного скалолазания, используя дидактический принцип «от общего к частному». Рассмотрим энергообеспечение в трех, основных соревновательных дисциплинах спортивного скалолазания, в боулдеринге, трудности и скорости.

      Но для рассмотрения картины энергообеспечения, нам необходимо ввести новое понятие – «мощность удержания зацепа». Это понятие актуально тем, что даже два одинаковых зацепа, расположенных на плоскостях с разными углами наклона, могут отличаться по показателю энергетического запроса для одного спортсмена. В данном случае, описанное выше положение, является исключительно моим субъективным допущение и безусловно требует экспериментального (констатирующего) подтверждения с использованием инструментальных методов. Мощность удержания зацепа занимает центральное место в описании процессов энергообеспечения.

      Дальнейшая разработка данного понятия, может привести к использованию данного понятия, как одного из объективных параметров трассы, на сегодняшний день трассы оцениваются субъективно. Мощность удержания зацепа зависит от многих переменных, например, от массы спортсмена, от способа удержания зацепа, от технической подготовленности спортсмена и других. В дальнейшем данное понятие можно будет использовать, например, для оценки технической подготовленности спортсменов.


      Боулдеринг, дисциплина, с которой мы начнем описание процессов энергообеспечения. Задача в боулдеринге – пройти серию коротких, но очень сложных трасс. Еще одно понятие, которое мы будем активно использовать – спортивное (соревновательное, специализированное) упражнение, есть процесс прохождения конкретного маршрута в боулдеринге, трудности или скорости, с соблюдением соревновательных условий.
      Когда мы проходим предельную для себя боулдеринговую трассу, мышцы – сгибатели пальцев развивают максимальную силу, чтобы удерживать зацепы, соответственно развивается максимальная для нас мощность удержания зацепа. Удерживая такую зацепу даже три секунды, чтобы, например, перенести ногу, в наших мышцах должно ресентезироваться определенное количество АТФ, мы делаем следующий перехват и удерживаем следующую зацепу еще 2 секунды и срываемся, наша система энергообеспечения не смогла предоставить необходимое количество энергии (количество АТФ) для дальнейшего удержания зацепа.

      Как правило процесс преодоления соревновательной трассы в боулдеринге занимает небольшое количество времени, приблизительно 30 секунд, это время зависит от параметров трассы. Неудачные попытки занимают еще меньше времени. Поэтому энергообеспечение в боулдеринге осуществляется креатинфосфатным и частично гликолитическим путями ресинтеза АТФ В трудности дело обстоит иначе, задача в трудности сводится к преодолению длинной соревновательной трассы, 50-60 зацепов (финалы Кубков мира).
      Время, затрачиваемое спортсмена на преодоление такой трассы, приблизительно 5-6 минут.
      Мощность удержания отдельных зацепов ниже по сравнению с боулдерингом, исключения могут составлять ключевые участки трассы. Поэтому энергообеспечение осуществляется преимущественно гликолитическим процессом, мышцы – сгибатели пальцев в момент срыва «забиты» (утомлены), чувствуется жжение, оно связано с накоплением в мышце продукта гликолитического энергообеспечения – молочной кислотой.
      Мышцы «набухают», это результат смещения водородного показателя (рН) внутри мышечной клетки в кислую сторону, вызывающего изменение проницаемости «стенок» клетки для молекул воды и вода из межклеточного пространства стремиться внутрь клетки.
      В скоростном лазании спортсмены развивают высочайшую мощность, пробегая эталонную трассу за 5,6 секунды, спортсмен массой 70 кг развивает мощность в 1839 Вт. Поэтому энергообеспечение в скоростном лазании обеспечивается креатинфосфатным путем ресинтеза АТФ.

      В заключительной части статьи поговорим о том, какими способами можно повысить эффективность энергообеспечения на тренировочных занятиях. Эффективность энергообеспечения можно повысить совокупностью двух показателей, первый показатель – мощность процесса энергообеспечения, повышается за счет увеличения ферментативной активности в том или ином процессе энергообеспечения, второй показатель – емкость механизма энергообеспечения, повышается за счет увеличения концентрации продуктов, принимающих участие в окислительных процессах того или иного пути ресинтеза АТФ.

      Результатом тренировок, направленных на повышение эффективности креатинфосфатного пути ресинтеза АТФ станет: увеличение концентрации в мышцах креатинфосфата и повышение активности фермента креатинкиназы в совокупности это приведет к повышению так называемого алактатного кислородного долга.

      Результатом тренировок, направленных на повышение эффективности гликолитического пути ресинтеза АТФ станет: увеличение концентрации в мышечных клетках внутримышечного гликогена и повышение активности основных ферментов гликолиза – фосфорилазы и фосфофруктокиназы. Так же повысится резистентность (нечувствительность) тканей к снижению водородного показателя (рН), повысится эффективность буферных систем крови.

      Ни в коем случае нельзя забывать о тренировке аэробного механизма энергообеспечения. Это очень важно, для представителей всех специализаций. В трудности аэробный механизм помогает восстановить концентрацию креатинфосфата в местах «отдыха» на трассе, хорошо развитые дыхательная и сердечно-сосудистая системы и система крови помогут утилизировать часть лактата. В боулдеринге, аэробный механизм так же помогает восстановить потенциал креатинфосфатного пути ресинтеза АТФ в перерыве между попытками и трассами (в рамках соревнований). В скоростном лазании, аэробный компонент полезен в случаях перестартовок, обеспечивая восстановление ведущего пути ресинтеза АТФ для данного соревновательного упражнения.

      Задача данной статьи – познакомить с механизмами энергообеспечения мышечной деятельности, многие аспекты, затронутые в ней, раскрыты поверхностно, т.к. статья ориентирована на широкий круг читателей. Методики воспитания отдельных видов выносливости будут описаны в следующих статьях.

      Все замечания и пожелания можно оставлять в комментариях или отправлять лично автору на электронный адрес: [email protected]

(по Е.С. Григоровичу, В.А. Переверзевой, 2008)

3.1. Механизмы энергообеспечения организма человека при мышечной работе

Любая мышечная деятельность сопряжена с использованием энергии, непосредственным источником которой является АТФ (аденозинтрифосфорная кислота ). АТФ называют универсальным источником энергии. Все остальные энергопроцессы направлены на воспроизводство и поддержание её уровня.

АТФ во время мышечной работы восстанавливается с такой же скоростью, как и расщепляется. Восстановление АТФ может осуществляться двумя путями – анаэробным (в ходе реакции без кислорода) и аэробным (с различным уровнем потребления кислорода) с участием специального энергетического вещества креатинфосфата . Готового для ресинтеза АТФ креатинфосфата хватает только на 10-15 секунд мощной работы. В таких условиях ресинтез АТФ идёт при остром дефиците кислорода (например, вот почему невозможно в спринтерском темпе пробежать 800 м). Мышечная работа очень высокой интенсивности осуществляется в анаэробном режиме, когда ресинтез АТФ совершается при остром дефиците кислорода. В этом случае организм добывает для работы АТФ, используя процесс гликолиза – превращения углеводородов, в результате которого вновь происходит ресинтез АТФ, и образуются конечные кислые продукты – молочная (лактат) и пировиноградная кислоты.

Гликолиз обеспечивает работоспособность организма в течение 2-4 минут, т.е. креатинфофатный механизм и гликолиз дают энергии совсем немного.

При высокой функциональной напряжённости в мышцах уменьшается содержание энергонасыщенных углеводов (гликогена и фосфорных – креатинфосфата), в крови снижается уровень глюкозы, в печени – гликогена. Если нагрузка продолжительная, то источник энергии восполняется за счёт повышения интенсивности освобождения жирных кислот из жировой ткани и их окисления в мышцах.

Аэробный механизм (когда запросы организма в кислороде полностью удовлетворяются) окисления питательных веществ с образованием креатинфосфата и ресинтеза АТФ является наиболее эффективным и может обеспечивать работоспособность человека в течение нескольких часов. В этих условиях организм добывает энергии АТФ во много раз больше, чем при гликолизе.

Следует отметить, что в клетках все превращения углеводов, жиров, органических кислот и, в последнюю очередь, белков на пути к ресинтезу АТФ проходят в митохондриях . В обычных условиях работает часть митохондрий, но по мере увеличения потребности мышц в энергии в процессе ресинтеза макроэнергетических соединений включается всё больше «подстанций».

Способность человека к ресинтезу АТФ, мощность и ёмкость каждого уровня индивидуальны, но диапазон всех уровней может быть расширен за счёт тренировки. Если запросы возрастают, в клетках увеличивается количество митохондрий, а при ещё большей потребности – убыстряется темп их обновления. Такой процесс повышает возможность использования кислорода в окислительных процессах и окисления жиров в большом количестве.

Важную роль в поддержании уровня кислорода в мышечных волокнах (особенно в красных – медленных) играет белок миоглобин , который содержит железо и по строению и функциям близок к гемоглобину.

Пример:

У тюленей массой 70 кг с миоглобином связано 2530 мл кислорода, что позволяет ему находиться под водой до 14 минут. У человека с той же массой с миоглобином связано 335 мл кислорода.

При выполнении физической нагрузки организму необходимо обеспечить работающие мышцы достаточным количеством кислорода для поддержания высокого уровня окислительных процессов, поставляющих энергию. Другими словами, нужно перестроить работу кардиореспираторной системы на режим увеличения вентиляции лёгких и возрастания объёмной скорости кровотока, прежде всего, в работающих органах (скелетных мышцах, сердце и др.) для оптимального удовлетворения их энергетических потребностей. Так, у тренированных лиц приспособление сердца к нагрузке происходит в большей степени за счёт повышения ударного объёма и в меньшей – за счёт увеличения частоты сердечных сокращений (ЧСС).

Глава 6. Основы энергообеспечения мышечной деятельности в контактных стилях единоборств

Вы наблюдаете за поединком. Отмечаете начало, спортсмены проводят ложные выпады, постоянно двигаются, готовят атаки, защищаются. Неожиданно один из спортсменов взрывается и наносит серию ударов в разные уровни. Попадает, развивает успех, прибавляет темп и вдруг встает. В конце схватки значительно потерял в легкости, дыхание учащенное и начало атак стало заметно. Что происходит? Какие энергетические процессы произошли, и почему так реагирует организм на соревновательную нагрузку. Ответ в энергообеспечении мышечной деятельности.

Тренировочное воздействие на мышечную систему влечет за собой изменения в энергообеспечении движений. Неоспоримо, что существуют общепринятые модельные характеристики соревновательной техники. Специалисты, тренеры, спортсмены, ученые имеют свое представление об учебно-тренировочном процессе и используют знания, умения и опыт на практике. В общем, модельные параметры спортсмена-единоборца понятны всем. У каждого тренера свой стереотип мышления. И каждый старается под свой стереотип подстроить процесс подготовки спортсмена. В большинстве случаев предпочтение отдается скоростно-силовым параметрам, некоторые развивают специальную выносливость, кто-то делает упор на технику и тактику. Цель одна – спортивный результат.

В этой главе подробно изложены механизмы энергообеспечения мышечной деятельности применительно к контактным ударным единоборствам.

Поединок в тхэквондо длится шесть минут и состоит из трех раундов по две минуты с минутой отдыха между раундами. В каратэ поединок длится три минуты и если победитель не определился, то после решения судей добавляется еще две минуты. В кикбоксинге три раунда по две минуты с минутой отдыха между раундами. Из этого можно сделать вывод, что поединок поддерживается анаэробными энергетическими процессами.

Для совершения физической нагрузки различной интенсивности необходима энергия, обеспечивающая процесс мышечного сокращения. В организме существует несколько систем синтеза энергии, которые используются для обеспечения того или иного вида физической нагрузки. Все эти системы объединяет то, что конечным энергетическим субстратом является аденозинтрифосфорная кислота (АТФ). Существует несколько механизмов синтеза АТФ: с использованием кислорода (аэробный путь), без использования кислорода (анаэробный путь), а также с образованием или без образования молочной кислоты (лактата).

Рассмотрим механизмы энергообеспечения мышечной деятельности.

Первое Основу оценочного действия, качественного удара составляют БС-волокна. Не секрет, удар или серия ударов осуществляется за короткий промежуток времени. Не маловажную роль играет биомеханика движения, но суть удара в силе, скорости и точности. Необходимо развить максимальную мощность за минимальный промежуток времени.

Стартовое движение вообще, будь то прыжок, удар, поднятие тяжестей осуществляется за счет креатиновой энергетики. И называется анаэробная алактатная система (АТФ – креатин). Эта система типична для кратковременных усилий и является основной при предельных нагрузках скоростно-силового характера. По этому пути осуществляется энергообмен при выполнении работы очень высокой интенсивности (спринт, прыжки в высоту, поднятие тяжестей и т. д.). А также во всех случаях, когда мы стартуем внезапно из состояния покоя и наши мышцы начинают расходовать небольшое количество АТФ, накопленной в мышечных волокнах, а затем АТФ образуется благодаря креатинфосфату (КрФ), содержащему одну молекулу креатина и одну молекулу фосфата, которые соединены с помощью энергообразующей связи (-*-): Креатин – *-Р

При разрыве этой связи выделяется энергия, используемая для ресинтеза АТФ из АДФ и фосфата.

Эта система называется анаэробной, поскольку в ресинтезе не участвует кислород, и алактатной, поскольку молочная кислота не образуется. Количество АТФ, которое может образоваться в этом случае (примерно в четыре раза больше запаса АТФ), ограничено, так как запасы креатинфосфата в мышечных волокнах невелики. Они истощаются через 6-9секунд.

Оптимальная тренировка креатинфосфатной системы

Основной целью развития креатинфосфатной системы является увеличение содержания креатинфосфата в мышцах. Это достигается совершением тренировочной работы высокой интенсивности в 80–90 % от максимальной. Продолжительность выполняемых упражнений очень короткая от 5-10 до 20 секунд, а интервалы между повторным выполнением нагрузки должны быть достаточно продолжительными (от 1 мин. и более). Так как такие виды тренировок осуществляются с высокой ЧСС, то они могут быть рекомендованы только спортсменам с достаточной степенью тренированности сердечно-сосудистой системы, и, соответственно, их нежелательно использовать у спортсменов старших возрастных групп.

Второе Кратковременную мышечную работу, в контактных стилях единоборств: тхэквондо, каратэ и кикбоксинге продолжительностью до 3 минут осуществляет анаэробная лактатная система. Именно тренировка анаэробной лактатной системы способствует качественному выполнению взрывных мощных ударов руками и ногами в поединке, которые длится до трех минут с небольшими паузами отдыха.

Энергетический обмен при длительном выполнении упражнений в основном удел аэробных реакций, но анаэробные процессы тоже играют немалую роль. Например, переход из состояния покоя к действию (движению) всегда связан с усилением кислородного запроса. Но органы кислородного снабжения «тяжелы на подъем», они не могут быстро включиться в работу с максимальной интенсивностью. Здесь и выручает способность работать в условиях кислородной задолженности, так как накопить кислорода в организме можно немного: всего 400–500 мл в легких, 900-1000 – в крови, 300–400 – в мышцах и межтканевой жидкости. Увы, таких запасов хватает лишь на несколько секунд упражнений. (В организме имеется также механизм накопления кислорода в виде супероксидов или перекисных соединений. Этот механизм, вероятнее всего, используют йоги).

При физической работе, при воздействии патогенных факторов организму для сохранения гомеостаза необходимо затратить определенную дополнительную энергию. Аэробный процесс, как уже отмечалось, является самым экономичным (если сравнить с креатин-фосфатным, то в 38 раз), однако, он является достаточно медленным и не может обеспечить достаточным количеством энергии. В таких случаях в энергообеспечении организма повышается роль углеводов. Они расщепляются первыми, когда возникает необходимость в срочном образовании энергии. Например, при работе максимальной и субмаксимальной мощности около 70–90 % всей расходуемой энергии обеспечивается за счет гликолиза. Другими словами для более быстрого получения энергии организм усиливает гликолитический тип энергообмена, так как он более быстрый, чем кислородный и значительно продолжительнее креатин-фосфатного.

Его еще называют анаэробная гликолитическая система, поскольку молекулы сахара расщепляются без участия кислорода. Молекулы сахара, точнее говоря молекулы глюкозы, расщепляются не полностью, а лишь до образования молочной кислоты. Мышца фактически содержит не молекулы молочной кислоты, а отрицательно заряженный ион лактата (LА-) и положительно заряженный ион водорода (Н+), а также энергию, необходимую для образования АТФ из АДФ и фосфата: Глюкоза = LА- + Н+ + энергия

Оба этих иона могут рассматриваться как ненужные, служащие помехой для мышц. Они также могут попасть из мышцы в кровь даже во время работы мышцы, если эта работа будет достаточно продолжительной.

Принято считать, что мышца прибегает к анаэробной лактатной системе в том случае, когда интенсивность выполняемой работы такова, что запрос АТФ в минуту будет превышать количество АТФ, образуемое за счет аэробной системы.

Рис. 1 Факторы, обеспечивающие анаэробную производительность организма.

Анаэробная лактатная система важна в беге на дистанции 400 м, 800 м и даже на более длинную дистанцию 1500 м. В дальнейшем мы увидим, что здесь обычно участвует не вся мышца, а лишь часть ее волокон.

Зависимость анаэробных возможностей организма (анаэробная производительность) от ряда факторов отражена на рис. 1

Третье Молочная кислота, или лактат всегда присутствуют в организме. При определенных видах нагрузки лактат поглощается волокнами той или других мышц. Уровень индивидуальной тренированности способен поглотить и использовать разное количество лактата. Только узконаправленные тренировки на формирование активности ферментных систем, катализирующих анаэробные реакции приводят к повышению устойчивости организма к высокой концентрации лактата в крови.

На практике – это высокий темп, хлесткие, сильные и точные удары, быстрое восстановление.

Многие люди не знают, что наш организм и в состоянии покоя вырабатывает очень небольшое количество молочной кислоты. Такие небольшие количества молочной кислоты могут быть легко удалены из организма, однако они служат объяснением того, почему всегда имеются следы лактата в крови у человека.

Можно сказать, что количество молочной кислоты, образуемой в секунду мышцами и выделяемого в кровь увеличивается, когда когда мы увеличиваем интенсивность нагрузки, например, скорость или вес отягощения. Вплоть до определенной интенсивности нагрузки, организм может выделять в кровь всю молочную кислоту. Обычно она поглощается другими мышцами или другими мышечными волокнами той же самой мышцы, которая вырабатывает эту субстанцию, а также сердцем, печенью или почками. Таким образом, уровень лактата в крови всегда остается близким к базальной величине.

У тренированных к длительным нагрузкам людей образуется довольно большое количество лактата, но их организм способен поглотить большую часть его.

Молочная кислота вырабатывается мышцами и затем выделяется в кровь, где можно измерить ее концентрацию. Она присутствует как в мышечных волокнах, так и в крови в виде двух ионов, соответственно одной молекулы и одного электрически заряженного атома. Первый ион – это отрицательно заряженный ион лактата (LА-). Уровень этой субстанции в крови может быть, в частности, измерен. Второй ион – это положительно заряженный ион водорода (Н-). Именно второй ион вызывает большой дискомфорт, т. к. повышает уровень молочной кислоты в мышцах. Более того, он даже может нарушить надлежащую работу мышц. Уменьшение работоспособности мышц мы ощущаем после бега с высокой скоростью. Оно вызвано, большей частью, как раз повышением уровня молочной кислоты. Когда этот уровень превысит определенную величину, в мышечных волокнах происходят разные изменения (например, изменение митохондрий), которые могут сохраняться в течение нескольких часов (даже дней у индивидов, не привыкших выполнять нагрузки, связанные с образованием молочной кислоты). Восстановительные механизмы организма человека постепенно реконструируют состояние до нагрузки, в ряде случаев состояние, которое позволяет индивиду переносить высокий уровень молочной кислоты в крови.

Заметим, что ионы водорода служат помехой не только мышцам, но и мозгу как только они поступят в кровь, они достигают и ликвора (жидкость, окружающая мозг) Именно поэтому образование большого количества молочной кислоты негативно влияет на ясность ума, координацию и рефлекторные реакции. Все эти эффекты могут быть отчасти вызваны аммиаком, который также образуется в мышцах. Т. е. молочная кислота представляет собой, во многих отношениях, ненужную субстанцию, мешающую организму. Тем не менее, ее молекулы содержат энергию, поэтому важно, чтобы рабочие мышцы учились использовать этот источник энергии.

Уровень лактата в крови

Ниже перечислены общепринятые показатели уровня лактата в крови. Заметьте, что при использовании разных методов измерения могут иметься незначительные расхождения в полученных показателях.

Около 1 ммоль/л: в состоянии покоя и при беге в медленном темпе;

Около 2 ммоль/л: во время марафонского бега в постоянном темпе или со скоростью на уровне аэробного порога;

Около 4 ммоль/л: у большинства бегунов это будет показатель, измеренный при беге со скоростью на уровне анаэробного порога или же при беге со скоростью, которую спортсмен в состоянии поддерживать в течение одного часа при беге в постоянном темпе по ровной поверхности;

Около 18–20 ммоль/л: у спортсменов высокого класса после достижения лучшего личного результата на дистанции 400 м или 800 м; у элитных спортсменов этот показатель может быть больше 25 ммоль/л;

Другой надежный тест анаэробной производительности организма – максимальный кислородный долг. Одним из первых определил этот показатель, равный 18,7 л, английский физиолог Хилл. Последующие исследования позволили получить еще большую величину – 20–23 л. Так же, как и в случае с МПК, подобный кислородный долг наблюдается только у спортсменов высокого класса. У не занимающихся спортом или активной физкультурой он не превышает 4–7 л или 60-100 мг на 1 кг веса.

Четвертое отрицательные проявления повышения уровня лактата, указывает на неспособность аэробных систем энергообеспечения обеспечивать преодоления физической нагрузки высокой интенсивности. Высокие концентрации лактата в крови являются отражением развития ацидоза (закисления) как внутри самих мышечных клеток (внутриклеточный ацидоз), так и в межклеточных пространствах, их окружающих (внеклеточный ацидоз). Закисление мышечных клеток приводит к серьезным метаболическим нарушениям. Количество лактата более 7ммоль/л противопоказано для отработки технических элементов.

В практике тренировок часто применяется монотонное высокоскоростное воздействие. Где ЧСС более 90 % от максимума. Нет достаточных пауз для отдыха и восстановления. Спортсмен загружается по полной программе, перенапрягается, не восстанавливается.

Функционирование многих ферментных систем, в том числе аэробного энергообеспечения, резко нарушается при развитии ацидоза, что, в частности, отрицательно отражается на аэробной емкости. Причем изменения эти могут длительно сохраняться. Так, например, может понадобиться несколько дней для полного восстановления аэробной емкости после преодоления физической нагрузки, сопровождавшейся значительным накоплением лактата. Частое неконтролируемое повторение такой нагрузки при отсутствии полного восстановления аэробных систем приводит к развитию перетренированности. Длительное сохранение внутри– и внеклеточного ацидоза сопровождается повреждением клеточных стенок скелетной мускулатуры. Это сопровождается возрастанием концентрации в крови внутриклеточных веществ, содержание которых в крови при отсутствие повреждения мышечных клеток минимально. К таким веществам относятся креатин-фосфокиназа (КФК) и мочевина. Увеличение концентрации этих веществ – явный признак повреждения мышечных клеток. Если для снижения концентрации этих веществ в крови требуется 24–96 часов, то для полного восстановления нормальной структуры мышечных клеток необходим значительно более длительный период. В этот период возможно проведение тренировочной нагрузки только восстановительного характера.

Повышение уровня лактата сопровождается одновременным нарушением координации движений, что отчетливо проявляется в высокотехничных видах спорта. При уровне лактата в 6–8 ммоль/л проведение тренировок по отработке технических приемов считается нецелесообразным, т. к. при нарушенной координации движений сложно добиться технически грамотного исполнения требуемых упражнений.

При ацидозе, связанном с накоплением лактата, резко возрастает риск получения травм спортсменами. Нарушение целостности клеточных оболочек скелетных мышц приводит к их микронадрывам. Резкие и нескоординированные движения могут привести и к более серьезным травматическим повреждениям (надрывы или разрывы мышц, сухожилий, повреждения суставов).

В "закисленных" мышцах замедляется ресинтез (повторное образование) креатинфосфата. Это следует учитывать при тренировках ударной техники рук и ног, особенно при подведении к соревнованиям. В это время следует избегать интенсивных физических нагрузок, сопровождающихся накоплением лактата и истощением запасов креатинфосфата.

Разработаны специальные методики тренировки лактатной системы, направленные на повышение устойчивости организма к усиленному образованию и накоплению молочной кислоты. Основная задача таких тренировок сводится к адаптации организма спортсмена преодолевать соревновательную нагрузку в условиях повышенного образования и накопления молочной кислоты.

Виды тренировок лактатной системы:

1. Повторные тренировки.

Физическая нагрузка высокой интенсивности и продолжительностью от 20 до 180 секунд чередуется с интервалами отдыха от 30 до 60 секунд. Интервалы отдыха не должны быть слишком продолжительными, иначе будет происходить снижение содержания лактата. Количество серий от 2 до 10. Паузы отдыха между сериями от 5 до 7 минут. Обычно это достаточно жесткие по своей интенсивности тренировочные занятия, требующие тщательного контроля состояния спортсмена и правильного выбора объема и продолжительности нагрузки. Тренер в процессе тренировки должен контролировать ЧСС. Данный текст является ознакомительным фрагментом.

Из книги Теория и методика детско-юношеского дзюдо автора Шестаков Василий Борисович

РАЗДЕЛ IV МЕТОДИЧЕСКИЕ ОСНОВЫ ОРГАНИЗАЦИИ СПОРТИВНОЙ ДЕЯТЕЛЬНОСТИ ДЗЮДОИСТОВ 10-16-ЛЕТНЕГО ВОЗРАСТА Деятельность дзюдоистов в процессе спортивной подготовки - это целенаправленная внешняя и внутренняя активность, обусловленная специфическими мотивами и интересами,

Из книги Греко-римская борьба: учебник автора Автор неизвестен

Из книги Тхэквондо [Теория и методика. Том.1. Спортивное единоборство] автора Шулика Юрий Александрович

Глава 9. Основы функционального обеспечения деятельности тхэквондиста 9.1. Матрица функциональных качеств тхэквондиста и поэтапные задачи их формирования В предыдущих главах шел разговор о технике и тактике тхэквондо. Однако технические и тактические умения

Из книги Дзюдо [Система и борьба: учебник] автора Шулика Юрий Александрович

Из книги Атлетическая гимнастика без снарядов автора Фохтин Владимир Георгиевич

Из книги Триатлон. Олимпийская дистанция автора Сысоев Игорь

Глава 2 Физиология мышечной деятельности Ни один акт жизнедеятельности не осуществляется без мышечного сокращения, будь то сокращение сердечной мышцы, стенок кровеносных сосудов или движение глазного яблока. Мышцы - надежный биодвигатель. Их работа - не только

Из книги С самого начала (путь тренера) автора Головихин Евгений Васильевич

Оценка систем энергообеспечения организма Оценка креатинфосфокиназного механизма энергообеспечения1. Уровень креатинфосфата в мышцах. Активность КФК.В тренированном организме эти показатели значительно выше, что свидетельствует о повышении возможностей

Из книги Теория и методика подтягиваний (части 1-3) автора Кожуркин А. Н.

Глава 5. Адаптация мышечной ткани Уважаемые коллеги, как приятно, отработав 5–6 лет с группой спортсменов получить прекрасный качественный материал для спорта высших достижений. Каждый спортсмен представляет конечный результат, многолетней тренерской работы. Грамотно

Из книги Книга-оружие «Запрещенные» приемы удушения автора Травников Александр Игоревич

2.3.2 Энергообеспечение мышечной деятельности. Таким образом, существует несколько способов энергообеспечения мышечной деятельности. Вопрос в том, в каком соотношении находятся пути ресинтеза АТФ при конкретной мышечной деятельности. Оказывается, это зависит от

Из книги Всестороннее руководство по развитию силы автора Хэтфилд Фредерик

Глава 1. Удушающие захваты и приемы в системе боевых и спортивных единоборств В ОСНОВЕ ЭФФЕКТИВНОГО УДУШАЮЩЕГО ПРИЕМА ЛЕЖИТ ПРАВИЛЬНЫЙ

Из книги Психология спорта автора Ильин Евгений Павлович

В тренировках на увеличение размеров мышц варьирование - ключ к достижению максимального увеличения мышечной массы. Используйте все приводимые методики, меняя их как во время подхода, так и между подходами. Для троеборцев увеличение размеров мышц за счет мышечной

Из книги К бою готов! Стрессоустойчивость в рукопашном бою автора Кадочников Алексей Алексеевич

ГЛАВА 1 Психология деятельности спортсмена Спорт – это специфический вид человеческой деятельности и в то же время – социальное явление, способствующее поднятию престижа не только отдельных личностей, но и целых общностей, в том числе и государства.В настоящее время

Из книги Скандинавская ходьба. Секреты известного тренера автора Полетаева Анастасия

Глава 1 Условия деятельности в рукопашном бою Психология рукопашного боя призвана изучать закономерности проявления и развития психики человека, формирования психологии деятельности личности в специфических условиях военно-прикладной деятельности. К деятельности в

Из книги Как победить любого противника в экстренных ситуациях. Секреты спецназа автора Кашин Сергей Павлович

Из книги Тайский бокс в свое удовольствие автора Шехов Владимир Геннадьевич

Краткая история возникновения видов единоборств «Верное поведение есть следствие познания его предпосылок» – так сказал один из известнейших философов прошлого века. Если взять это высказывание за некую аксиому, можно вывести следующее: чтобы изучить боевое

Из книги автора

Глава 1. Отличие тайского бокса от других единоборств Тайский бокс - один их самых простых в освоении видов единоборств. Удары, которые в нем используются, понятны и лишены «изысков». Они очень быстро становятся естественными движениями тела бойца, неразрывно связанными



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!