Упражнения. Питание. Диеты. Тренировки. Спорт

Виды равновесия. Центр тяжести. Условия равновесия твердого тела

В механике часто возникает вопрос, в каких положениях тело, на которое действует сила тяжести, может сколь угодно долго оставаться в покое, если оно находилось в покое в начальный момент. Очевидно, для этого силы, действующие на тело, должны взаимно уравновешиваться. Положения, в которых силы, действующие на тело, взаимно уравновешиваются, называют положениями равновесия.

Но практически не во всяком положении равновесия тело, находившееся в начальный момент в покое, действительно будет оставаться в покое и в последующее время.

Дело в том, что в реальных условиях, помимо учитываемых нами сил (сила тяжести, сила реакции подвеса, опоры, оси и т. п.), на тело действуют и неучитываемые случайные неустранимые силы: небольшие сотрясения, колебания воздуха и т. д. Под действием таких сил тело будет хотя бы немного отклоняться от положения равновесия, а в этом случае дальнейшее поведение тела может быть различным.

При отклонении тела от положения равновесия силы, действующие на него, как правило, изменится и равновесие сил нарушится. Изменившиеся силы будут вызывать движение тела. Если эти силы таковы, что под их действием тело возвращается к положению равновесия, то тело, несмотря на случайные толчки, будет все же оставаться вблизи положения равновесия. В этом случае мы говорим об устойчивом равновесии тела. В других случаях изменившиеся силы таковы, что они вызывают дальнейшее отклонение тела от положения равновесия. Тогда будет достаточно самого малого толчка, чтобы изменившиеся силы стали все более отклонять тело от положения равновесия; тело уже не будет оставаться вблизи положения равновесия, а уйдет от него. Такое положение равновесия называют неустойчивым.

Итак, для устойчивости необходимо, чтобы при отклонении тела от положения равновесия возникали силы, возвращающие тело к первоначальному положению. Таково, например, положение шарика на вогнутой подставке (рис. 131, а): при отклонении шарика от положения равновесия (самое нижнее положение) равнодействующая силы реакции подставки и силы тяжести возвращает шарик к положению равновесия: равновесие устойчивое. В случае же выпуклой подставки (рис. 131, б) равнодействующая удаляет шарик от положения равновесия (самое верхнее положение): равновесие неустойчивое.

Рис. 131. Устойчивое (а), неустойчивое (б) и безразличное (в) равновесие шарика на поверхности

Другим примером может служить равновесие тела, подвешенного в одной точке. Определяя положение центра тяжести по способу подвешивания, описанному в предыдущем параграфе, мы всегда обнаружим, что центр тяжести лежит ниже точки подвеса и обязательно на одной вертикали с ней, так как иначе сила натяжения нити не могла бы уравновесить силу тяжести (рис. 132, а). Между тем сила тяжести и сила натяжения нити могут уравновесить друг друга также и в том случае, когда центр тяжести лежит на вертикали над точкой подвеса (рис. 132, б). Действительно, и в этом случае сила тяжести и равная ей по модулю сила натяжения нити уравновешивали бы друг друга. Однако, как легко убедиться на опыте, при подвешивании тела оно не будет оставаться в этом втором положении равновесия. Хотя оба случая соответствуют положениям равновесия, но практически можно осуществить только один из них - первый.

Рис. 132. а) Положение равновесия при центре тяжести , расположенном ниже точки подвеса . б) Положение равновесия при центре тяжести , расположенном выше точки подвеса . в) При отклонении тела из положения а) сила тяжести создает момент, возвращающий тело в положение равновесия. г) При отклонении тела из положения б) сила тяжести создает момент, удаляющий тело от положения равновесия

Причина этого в том, что если тело немного отклонить от первого положения (рис. 132, в), то сила тяжести создаст вращающий момент относительно точки подвеса, который будет возвращать тело обратно. Это - положение устойчивого равновесия. Наоборот, при отклонении тела от второго положения равновесия (рис. 132, г) сила будет удалять его от этого положения. Это - положение неустойчивого равновесия. Встречаются и промежуточные случаи равновесия: если шарик лежит на горизонтальной опоре, то смещение шарика вообще не нарушает равновесия, так как сила тяжести и сила, действующая со стороны плоскости, уравновешивают друг друга при любом положении шарика. Такое равновесие мы называем безразличным (рис. 131, е).

Другой пример безразличного равновесия - тело, закрепленное на горизонтальной или наклонной оси, проходящей через центр тяжести этого тела. При повороте такого тела вокруг оси момент силы тяжести относительно оси все время остается равным нулю (сила тяжести проходит через ось вращения), и тело остается в равновесии в любом положении. Этим пользуются для проверки правильности изготовления колес, якорей генераторов электрического тока и т. д. В точно изготовленном колесе центр тяжести должен лежать на оси. Поэтому точно сделанное колесо, ось которого может вращаться в подшипниках, должно оставаться в равновесии при любом повороте оси. Если оно само возвращается все время в какое-то одно положение, то это указывает, что колесо не сбалансировано, т. е. центр тяжести его не лежит точно на оси.

Тело, закрепленное на вертикальной оси, всегда находится в безразличном равновесии под действием силы тяжести, независимо от того, проходит ось через центр тяжести или нет.

82.1. Испытайте, в каком положении равновесия устанавливается переднее велосипедное колесо, если велосипед приподнять. Что надо сделать для того, чтобы колесо находилось в состоянии безразличного равновесия?

1. Статика -
раздел механики, изучающий условия равновесия тел, называется статикой.

2. Устойчивое
Равновесие, при котором выведенное из положения равновесия тело вновь к нему возвращается, называется устойчивым.

При устойчивом равновесии центр тяжести тела
Расположен ниже оси вращения и находится на вертикальной прямой, проходящей через эту ось.

3. Неустойчивое равновесие
Равновесие, при котором выведенное из равновесия тело не возвращается в начальное положение, называют неустойчивым.


При неустойчивом равновесии центр тяжести тела
Расположен выше оси вращения и находится на вертикальной прямой, проходящей через эту ось.

4. Безразличное равновесие
При отклонении или перемещении тела оно остается в равновесии.


При безразличном равновесии ось вращения тела
Проходит через его центр тяжести, при этом центр тяжести тела остается на одном и том же уровне при любых положениях тела.

5. С помощью рисунка поясните зависимость устойчивости тела от положения его центра тяжести.


Чем больше угол α, тем тело более устойчивое.

6. Устойчивость тела зависит от
Угла наклона.

7. Какое из двух положений пластинки более устойчивое? Почему?

Для того чтобы судить о поведении тела в реальных условиях, мало знать, что оно находится в равновесии. Надо еще оценить это равновесие. Различают устойчивое, неустойчивое и безразличное равновесие.

Равновесие тела называют устойчивым , если при отклонении от него возникают силы, возвращающие тело в положение равновесия (рис. 1 положение 2). В устойчивом равновесии центр тяжести тела занимает наинизшее из всех близких положений. Положение устойчивого равновесия связано с минимумом потенциальной энергии по отношению ко всем близким соседним положениям тела.

Равновесие тела называют неустойчивым , если при самом незначительном отклонении от него равнодействующая действующих на тело сил вызывает дальнейшее отклонение тела от положения равновесия (рис. 1 положение 1). В положении неустойчивого равновесия высота центра тяжести максимальна и потенциальная энергия максимальна по отношению к другим близким положениям тела.

Равновесие, при котором смещение тела в любом направлении не вызывает изменения действующих на него сил и равновесие тела сохраняется, называют безразличным (рис. 1 положение 3).

Безразличное равновесие связано с неизменной потенциальной энергией всех близких состояний, и высота центра тяжести одинакова во всех достаточно близких положениях.

Тело, имеющее ось вращения (например, однородная линейка, которая может вращаться вокруг оси, проходящей через точку О, изображенная на рисунке 2), находится в равновесии, если вертикальная прямая, проходящая через центр тяжести тела, проходит через ось вращения. Причем если центр тяжести С выше оси вращения (рис. 2,1), то при любом отклонении от положения равновесия потенциальная энергия уменьшается и момент силы тяжести относительно оси О отклоняет тело дальше от положения равновесия. Это неустойчивое положение равновесия. Если центр тяжести находится ниже оси вращения (рис. 2,2), то равновесие устойчивое. Если центр тяжести и ось вращения совпадают (рис. 2,3), то положение равновесия безразличное.

Тело, имеющее площадь опоры, находится в равновесии, если вертикальная прямая, проходящая через центр тяжести тела не выходит за пределы площади опоры этого тела, т.е. за пределы контура образованного точками соприкосновения тела с опорой Равновесие в этом случае зависит не только от расстояния между центром тяжести и опорой (т.е. от его потенциальной энергии в гравитационном поле Земли), но и от расположения и размеров площади опоры этого тела.

На рисунке 2 изображено тело, имеющее форму цилиндра. Если его наклонить на малый угол, то оно возвратится в исходное положение 1 или 2. Если же его отклонить на угол (положение 3), то тело опрокинется. При заданной массе и площади опоры устойчивость тела тем выше, чем ниже расположен его центр тяжести, т.е. чем меньше угол между прямой, соединяющей центр тяжести тела и крайнюю точку соприкосновения площади опоры с горизонтальной плоскостью.

В VIII классе решают задачи, в которых центр тяжести находят или на опыте, или геометрическим, или аналитическим путем. Полезно также решить ряд задач несколькими способами, чтобы убедить учащихся в их правомерности. Понятие о центре тяжести используют затем при решении задач о видах равновесия и устойчивости тел. Для определения устойчивости тела, имеющего площадь опоры, используют правило о положении отвеса, опущенного из центра тяжести. Это правило нужно обосновать, используя сведения о равновесии тела, имеющего ось вращения.

417. Определите на опыте и обоснуйте теоретически положение центра тяжести круга, прямоугольника и треугольника, вырезанных из картона.

418. Где расположен центр тяжести карандаша, обруча? Всегда ли центр тяжести располагается внутри тела?

419 (э). Пользуясь спицами и нитками, определите центр тяжести картофелины или свеклы.

Решение. Картофелину подвешивают два-три раза в разных положениях и протыкают по направлению нити спицей. Разрезав картофелину, обнаруживают, что все отверстия сходятся в одной точке - центре тяжести.

420 (э). С помощью медных монет определите вес линейки.

Решение. На конец линейки кладут монеты и уравновешивают, как показано на рисунке 100, а. Из рисунка видно, что . Вес линейки численно равен

К задачам этого типа учащиеся нередко делают чертежи,

подобные изображенному на рисунке 100, б, и при решении учитывают вес рычага по обе стороны от точки опоры. В этом нет надобности, так как равнодействующая сил равна весу тела и приложена к его центру тяжести.

421. Найти центр тяжести двух грузов по 4 и 1 н (рис. 101). Расстояние между центрами грузов Весом соединительного стержня пренебречь.

Решение 1. Центр тяжести О - точка приложения равнодействующей параллельных сил делит расстояние на отрезки, обратно пропорциональные силам. Поэтому

Решение 2. Грузы останутся в равновесии, если стержень подпереть в центре тяжести - точке откуда или

Для задач, в которых находят центр тяжести двух тел, оба решения равноценны. Но если требуется определить центр тяжести трех или более тел, то решение первым способом потребует последовательного попарного сложения всех сил, что нерационально. Поэтому лучше задачи этого типа решать вторым способом.

422. Где находится центр тяжести вала с двумя шкивами (рис. 102)? Длина вала между шкивами толщина шкивов по а вес вала и шкивов соответственно равен Ответ дать с точностью до трех значащих цифр. .

Решение. Покажем на чертеже направление и точки приложения сил тяжести Центр тяжести лежит между точками А и В. Система находится в

равновесии, следовательно, Приняв во внимание толщину шкивов получим: откуда см.

423. Из однородной круглой пластинки с радиусом вырезан круг вдвое меньшего радиуса касающийся первого круга. Найти центр тяжести полученной пластинки.

Решение 1. Разобьем фигуру на части, выделив пунктиром круг, как показано на рисунке 103, а, и применим тот же метод, что и в предыдущей задаче, считая силы тяжести, действующие на отдельные части фигуры, пропорциональными их площадям. Площадь «лепестков» равна Центр тяжести лежит правее центра О большого круга. Площадь малого круга равна Принимая во внимание, что запишем: - откуда

Решение 2. Мысленно заполним вырез. Это равносильно тому, что в точке А будет приложена сила равная силе тяжести, действующей на круг радиуса Для того чтобы равновесие фигуры не нарушилось, нужно приложить вверх силу равную по величине Теперь на сплошной круг действуют силы равная силе тяжести, действующей на сплошной круг (рис. 103, б):

Из решения 2 видно, что для нахождения центра тяжести однородных тел с полостями можно считать тела сплошными, но при

этом к центру тяжести полостей следует прилагать вверх силы, равные по величине силе тяжести, действующей на заполнившее их вещество.

424. Устойчивое, неустойчивое или безразличное положение равновесия занимают следующие тела: маятник часов, висящий вертикально; шар, лежащий на выпуклой поверхности; шар, лежащий на вогнутой поверхности; шар, находящийся на горизонтальной поверхности? Ответ обоснуйте, основываясь на условии равновесия тела, имеющего ось вращения.

Решение. Отклоним маятник и шар, лежащий на вогнутой поверхности, от положения равновесия. Как видно из рисунка 104, а на них будут действовать вращающие моменты заставляющие их двигаться к положению равновесия. Следовательно, эти тела находятся в положении устойчивого равновесия.

На шар, отклоненный от положения равновесия на выпуклой поверхности, действует вращающий момент, заставляющий его катиться дальше от положения равновесия (рис. 104, б.). Следовательно, этот шар находится в положении неустойчивого равновесия.

В любом положении на шар, лежащий на горизонтальной поверхности, действуют уравновешивающиеся силы (рис. 104, е), поэтому шар находится в положении безразличного равновесия.

425. Длинный шест, поставленный вертикально, находится в положении неустойчивого равновесия. Как же его удерживает жонглер?

Ответ. Жонглер слегка смещает в сторону точку опоры шеста, в результате чего создается вращающий момент, препятствующий его падению.

426. Деревянную линейку закрепите под углом к горизонту и поставьте на нее спичечные коробки, снабженные отвесами, как показано на рисунке 105, а. (Для того чтобы коробки не соскальзывали по линейке, воткните в нее кнопки.) Какая из коробок упадет раньше, если увеличивать угол наклона линейки? Почему? Положите коробки плашмя (рис. 105, б). Какая стопка опрокинется раньше, если увеличивать угол наклона? Почему?

Решение. На коробки действуют сила тяжести и реакция опоры. Коробка будет в равновесии, если или Пока отвес не выходит за площадь опоры, момент

Возвращает тело в положение равновесия и, наоборот, опрокидывает его, когда отвес выходит за площадь опоры.

427. Каким образом увеличивают устойчивость штативов, настольных ламп, подъемных кранов?

Определение

Если тело находится в состоянии покоя относительно инерциальной системы отсчета, то считают, что оно находится в равновесии .

Условия равновесия изучает раздел физики, который называют статикой.

Условия равновесия тела

Первое условие равновесия можно сформулировать исходя, из второго закона Ньютона: тело может находиться в состоянии покоя в некоторой инерциальной системе отсчета только, если равнодействующая всех сил, приложенных к этому телу (материальной точке) равна нулю:

\[\sum\limits^N_{i=1}{{\overline{F}}_i=0\left(1\right).}\]

Выражение (1) называют необходимым условием равновесия тела.

Если тело не подходит под определение материальной точки, то первого условия равновесия недостаточно.

Если тело может вращаться около некоторой оси, то оно находится в состоянии равновесия, если сумма моментов всех действующих на него сил относительно любой оси вращения равна нулю:

\[\sum\limits^N_{i=1}{{\overline{M}}_i=0\left(2\right).}\]

Второе условие равновесия называют правилом моментов сил. $\ $\textit{}

Выше названные условия являются достаточными для того, чтобы тело считать находящимся в равновесии.

Виды равновесия

Равновесие можно разделить на: устойчивое, неустойчивое и безразличное.

Равновесие тела называют устойчивым, если при небольших смещениях, действующие на него силы, стремятся вернуть его снова в положение равновесия.

Положение равновесия называют неустойчивым, если при малых смещениях силы, оказывающие воздействие на тело уводят его из положения равновесия еще больше.

Если при небольших смещениях из положения равновесия силы, действующие на тело и их моменты, уравновешиваются, как и прежде, то такое равновесие называют безразличным.

В устойчивом положении равновесия центр тяжести занимает самое низкое положение в сравнении со всеми возможными соседними положениями тела.

1) Допустим, что тело может вращаться около закрепленной оси. Тело находится в положении равновесия, если ось проходит через центр масс тела (безразличное равновесие). Если центр тяжести тела находится ниже оси вращения, то положение равновесия тела будет устойчивым. Пусть ось вращения расположена ниже центра масс тела, то равновесие будет неустойчивым.

2) В том случае, если тело имеет точку опоры (например, шарик, лежащий на опоре), то тело находится в состоянии устойчивого равновесия, когда равнодействующая всех сил, приложенных к телу, направлена в сторону положения равновесия. Если равнодействующая равна нулю, то положение равновесия безразличное. Положение тела будет не устойчивым равновесием, если равнодействующая сил, приложенных к телу, направлена от положения равновесия.

3) Пусть тело имеет площадь опоры. Тогда его равновесие будет устойчивым, если вертикаль, проводимая через центр масс этого тела, пересечет площадь опоры.

Потенциальная энергия и устойчивое равновесие

Как было сказано тело может находиться в состоянии равновесия только, если равнодействующая всех сил, приложенных к телу, равна нулю. Следовательно, равновесию соответствует точка минимума (M) или максимума (N) потенциальной энергии ($E_p$), так как в этих точках сила становится равной нулю. Но, следует заметить, что точки максимума и минимума энергии не являются равноценными (рис.1).

Если частица находится в точке с минимумом потенциальной энергии, ее координата на рис.1 $x_M$. На участке $x_1\le x\le x_M$ потенциальная энергия убывает, значит, на частицу действует положительная сила отталкивания, которая возвращает частицу в точку М.

На отрезке $x_M\le x\le x_2$ энергия $E_p$ увеличивается, на частицу оказывает воздействие отрицательная сила притяжения, которая снова возвращает тело в точку M.

Получается, что если частицу, находящуюся в точке с минимумом потенциальной энергии вывести из положения равновесия, то под действием сил она будет возвращаться назад в эту точку. Можно сделать следующий вывод: условием устойчивого равновесия является минимальная величина потенциальной энергии.

Если провести рассуждения, которые аналогичны тем, что были выше, получим, что точка N, точка максимума потенциальной энергии - это точка неустойчивого равновесия.

Анализируя условия равновесия, следует рассматривать окрестность точки поля ближайшую к ней, где нет дополнительных экстремумов энергии. Проводя анализ сил, действующих на частицу, которую смещали вправо от т М ($x_2>x_M$) мы считали, то на частицу действуют силы притяжения. Это справедливо тогда, когда частица находится левее максимума энергии. Если частица перемещена дальше вправо, то мы получаем силу отталкивания и частица не вернется в прежнее положение.

Примеры задач с решением

Пример 1

Задание. Величина силы, действующей на материальную точку, движущейся по оси X, задана уравнением: $F=-Ax\ (где\ A>0).$ Считая систему консервативной, укажите на потенциальной кривой точку устойчивого равновесия тела.

Решение. Для того чтобы определить форму потенциальной кривой найдем зависимость потенциальной энергии от координаты материальной точки ($E_p(x)$). Для этого используем формулу связи между потенциальной энергией и консервативной силой:

Подставим в подынтегральное выражение уравнение $F=-Ax$, которое задает нашу силу:

Графиком $E_p(x)$ , будет парабола (рис.2). Минимум потенциальной энергии будет находиться в точке $E_p\left(x=0\right)=С.$

Ответ. Точка С на рис.2 - положение устойчивого равновесия.

Пример 2

Задание. Будет ли равновесие шарика, подвешенного на нити устойчивым (рис.3)?

Решение. Точку подвеса шарика 0 можно рассматривать как ось вращения. Цент масс шарика находится ниже оси вращения, следовательно, равновесие системы в точке А будет устойчивым. Если шарик сместить из точки A в точку B, то на него будут действовать силы, которые возвращают его в положение А (равнодействующая сил $\overline{F}$).

Ответ. Равновесие устойчиво.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!