Упражнения. Питание. Диеты. Тренировки. Спорт

Что такое скорость в момент времени. Реферат: Способы определения мгновенной скорости в спорте

2.2 Средняя и мгновенная скорость при движении точки по прямой

Как мы уже отмечали, равномерное движение является простейшей моделью механического движения. Если такая модель неприменима, то необходимо использовать более сложные модели. Для их построение нам необходимо рассмотреть понятие скорости в случае неравномерного движения.

Пусть за интервал времени от t 0 до t 1 координата точки изменилась от x 0 до x 1 . Если мы вычислим скорость по прежнему правилу

\(~\upsilon_{cp} = \frac{\Delta x}{\Delta t} = \frac{x_1 - x_0}{t_1 - t_0} \) , (1)

то получим величину (она называется средней скоростью ), которая описывает быстроту движения «в среднем» - вполне возможно, что за первую половину времени движения точка сместилась на большее расстояние, чем за вторую.

Средней скоростью называется физическая величина равная отношению изменения координаты точки к интервалу времени, в течение которого это изменение произошло.

Геометрический смысл средней скорости - коэффициент наклона секущей AB графика закона движения.

Для более детального, более точного описания движения, можно задать два значения средней скорости – за первую половину времени движения υ ср1 , за вторую половину - υ ср2 .Если и такая точность нас не устраивает - то необходимо дробить временные интервалы дальше - на четыре, восемь и т.д. частей. При этом необходимо задавать соответственно четыре, восемь и т.д. значений средних скоростей. Согласитесь, такое описание становится громоздким и неудобным. Выход из этой ситуации давно найден - он заключается в том, что бы рассматривать скорость как функцию времени.

Давайте посмотрим, как будет меняться средняя скорость при уменьшении промежутка времени, за который мы эту скорость вычисляем. На рис.6 показан график зависимости координаты материальной точки от времени. Будем вычислять среднюю скорость за интервал времени от t 0 до t 1 , последовательно приближая значение t 1 к t 0 . При этом семейство секущих A 0 A 1 , A 0 A 1 ’, A 0 A 1 ’’ (рис.6), будет стремиться к некоторому предельному положению прямой A 0 B , которая является касательной к графику закона движения. Мы приводим два различных случая, чтобы показать, что мгновенная скорость может быть как больше, так и меньше средней скорости. Эту процедуру можно описать и алгебраически, последовательно вычисляя отношения \(~\upsilon_{cp} = \frac{x_1 - x_0}{t_1 - t_0}\) , \(~\upsilon"_{cp} = \frac{x"_1 - x_0}{t"_1 - t_0}\) , \(~\upsilon""_{cp} = \frac{x""_1 - x_0}{t""_1 - t_0}\) . При этом оказывается, что эти величины приближаются к некоторому вполне определенному значению. Это предельное значение получило название мгновенной скорости .

Мгновенной скоростью называется отношение изменения координаты точки к интервалу времени, за которое это изменение произошло, при интервале времени, стремящемся к нулю :

\(~\upsilon = \frac{\Delta x}{\Delta t}\) , при Δt → 0 . (2)

Геометрический смысл мгновенной скорости - коэффициент наклона касательной к графику закона движения.

Таким образом, мы «привязали» значение мгновенной скорости к конкретному моменту времени - задали значение скорости в данный момент времени, в данной точке пространства. Тем самым у нас появилась возможность рассматривать скорость тела как функцию времени, или функцию координаты.

С математической точки зрения это гораздо удобней, чем задавать значения средних скоростей на многих малых временных промежутках. Однако давайте задумаемся, а имеет ли физический смысл скорость в данный момент времени? Скорость - характеристика движения, в данном случае перемещения тела в пространстве. Для того чтобы зафиксировать перемещение необходимо наблюдать за движением в течение некоторого промежутка времени. Чтобы измерить скорость, также необходим промежуток времени. Даже самые совершенные измерители скорости радарные установки измеряют скорость движущихся автомобилей пусть за малый (порядка одной миллионной доли секунды) промежуток времени, а не в какой-то момент времени. Следовательно, выражение «скорость в данный момент времени» с точки зрения физики некорректно. Тем не менее, в механике постоянно пользуются понятием мгновенной скорости, которое очень удобно в математических расчетах. Математически, логически мы можем рассмотреть предельный переход Δt → 0, а физически имеется минимально возможное значение промежутка Δt , за который можно измерить скорость.

В дальнейшем, говоря о скорости, мы будем иметь в виду именно мгновенную скорость. Заметим, при равномерном движении мгновенная скорость равна ранее определенной скорости, потому, что при равномерном движении отношение \(~\frac{\Delta x}{\Delta t}\) не зависит от величины промежутка времени, поэтому остается неизменным и при сколь угодно малом Δt .

Так как скорость может зависеть от времени, то ее следует рассматривать как функцию времени, и изображать ее в виде графика.

«Физика - 10 класс»

Какую скорость показывает спидометр?
Может ли городской транспорт двигаться равномерно и прямолинейно?

Реальные тела (человек, автомобиль, ракета, теплоход и т. д.), как правило, не движутся с постоянной скоростью. Они начинают двигаться из состояния покоя, и их скорость увеличивается постепенно, при остановке скорость уменьшается также постепенно, таким образом, реальные тела движутся неравномерно.

Неравномерное движение может быть как прямолинейным, так и криволинейным.

Чтобы полностью описать неравномерное движение точки, надо знать её положение и скорость в каждый момент времени.

Скорость точки в данный момент времени называется мгновенной скоростью .

Что же понимают под мгновенной скоростью?

Пусть точка, двигаясь неравномерно и по кривой линии, в некоторый момент времени t занимает положение М (рис. 1.24). По прошествии времени Δt 1 от этого момента точка займёт положение М 1 , совершив перемещение Δ 1 . Поделив вектор Δ 1 на промежуток времени Δt 1 найдём такую скорость равномерного прямолинейного движения с которой должна была бы двигаться точка, чтобы за время Δt попасть из положения М в положение М 1 . Эту скорость называют средней скоростью перемещения точки за время Δt 1 .

Обозначив её через ср1 , запишем: Средняя скорость направлена вдоль секущей ММ 1 . По той же формуле мы находим скорость точки при равномерном прямолинейном движении.

Скорость, с которой должна равномерно и прямолинейно двигаться точка, чтобы попасть из начального положения в конечное за определённый промежуток времени, называется средней скоростью перемещения.

Для того чтобы определить скорость в данный момент времени, когда точка занимает положение М, найдём средние скорости за всё меньшие и меньшие промежутки времени:

Интересно, верно ли следующее определение мгновенной скорости: «Скорость тела в данной точке траектории называется мгновенной скоростью»?

При уменьшении промежутка времени Δt перемещения точки уменьшаются по модулю и меняются по направлению. Соответственно этому средние скорости также меняются как по модулю, так и по направлению. Но по мере приближения промежутка времени Δt к нулю средние скорости всё меньше и меньше будут отличаться друг от друга. А это означает, что при стремлении промежутка времени Δt к нулю отношение стремится к определённому вектору как к своему предельному значению. В механике такую величину называют скоростью точки в данный момент времени или просто мгновенной скоростью и обозначают

Мгновенная скорость точки есть величина, равная пределу отношения перемещения Δ к промежутку времени Δt, в течение которого это перемещение произошло, при стремлении промежутка Δt к нулю.

Выясним теперь, как направлен вектор мгновенной скорости. В любой точке траектории вектор мгновенной скорости направлен так, как в пределе, при стремлении промежутка времени Δt к нулю, направлена средняя скорость перемещения. Эта средняя скорость в течение промежутка времени Δt направлена так, как направлен вектор перемещения Δ Из рисунка 1.24 видно, что при уменьшении промежутка времени Δt вектор Δ уменьшая свою длину, одновременно поворачивается. Чем короче становится вектор Δ, тем ближе он к касательной, проведённой к траектории в данной точке М, т. е. секущая переходит в касательную. Следовательно,

мгновенная скорость направлена по касательной к траектории (см. рис. 1.24).

В частности, скорость точки, движущейся по окружности, направлена по касательной к этой окружности. В этом нетрудно убедиться. Если маленькие частички отделяются от вращающегося диска, то они летят по касательной, так как имеют в момент отрыва скорость, равную скорости точек на окружности диска. Вот почему грязь из-под колёс буксующей автомашины летит по касательной к окружности колёс (рис. 1.25).

Понятие мгновенной скорости - одно из основных понятий кинематики. Это понятие относится к точке. Поэтому в дальнейшем, говоря о скорости движения тела, которое нельзя считать точкой, мы можем говорить о скорости какой-нибудь его точки.

Помимо средней скорости перемещения, для описания движения чаще пользуются средней путевой скоростью cps .

Средняя путевая скорость определяется отношением пути к промежутку времени, за который этот путь пройден:

Когда мы говорим, что путь от Москвы до Санкт-Петербурга поезд прошёл со скоростью 80 км/ч, мы имеем в виду именно среднюю путевую скорость движения поезда между этими городами. Модуль средней скорости перемещения при этом будет меньше средней путевой скорости, так как s > |Δ|.

Для неравномерного движения также справедлив закон сложения скоростей. В этом случае складываются мгновенные скорости.

Мгновенная скорость движения.

Обратимся теперь к задаче, известной вам из физики. Рассмотрим движение точки по прямой. Пусть координата х точки в момент времени t равна x(t). Как и в курсе физики, предполагаем, что движение осуществляется непрерывно и плавно. Иными словами, речь идет о движениях, наблюдаемых в реальной жизни. Для определенности будем считать, что речь идет о движении автомобиля по прямолинейному участку шоссе.

Поставим задачу: по известной зависимости x(t) определить скорость, с которой движется автомобиль в момент времени t (как вы знаете, эта скорость называется мгновенной скоростью ). Если зависимость х(t) линейна, ответ прост: в любой момент времени скорость есть отношение пройденного пути ко времени. Если движение не равномерно, задача сложнее.

Тот факт, что в любой момент времени автомобиль движется с какой-то определенной (для этого момента) скоростью, очевиден Эту скорость легко найти, сделав в момент времени t 0 фотоснимок спидометра. (Показание спидометра указывает значение мгновенной скорости в момент t). Чтобы найти скорость v мгн (t 0), зная х(t), на уроках физики вы поступали следующим образом

Средняя скорость за промежуток времени длительностью |Δt| от t 0 до t 0 + Δt следующая:

Как мы предположили, тело движется плавно. Поэтому естественно полагать: если?t очень мало, то за этот промежуток времени скорость практически не меняется. Но тогда средняя скорость (на этом промежутке) практически не отличается от значения v мгн (t 0), которое мы ищем. Это подсказывает следующий способ определения мгновенной скорости: найти v ср (Δt) и посмотреть, к какому значению оно близко, если считать, что Δt практически не отличается от нуля.

Рассмотрим конкретный пример. Найдем мгновенную скорость тела, брошенного вверх со скоростью V 0 . Высота его в момент t находится по известной формуле

1) Найдем сначала Δh:

3) Будем теперь уменьшать Δt, приближая его к нулю. Для краткости говорят, что Δt стремится к нулю. Это записывается так: Δt → 0 Как легко понять, в этом случае значение -gΔt/2 тоже стремится к нулю, т. е.

А поскольку величины V 0 и –gt 0 , а значит, и V 0 -gt 0 постоянны, из формулы (1) получаем:

Итак, мгновенная скорость точки в момент времени t 0 находится по формуле

Уменьшая неограниченно промежуток времени t, за который произошло перемещение м. т. в пространстве в пределе, когда t  0, получим мгновенную скорость, т. е.

Вектор мгновенной скорости равен пределу отношения приращения радиус-вектора м. т. к тому промежутку времени, за которое это приращение произошло, когда t 0 или равен первой производной радиус-вектора по времени.

Вектор мгновенной скорости в данный момент времени направлен по касательной к траектории в данной точке (рис. 9).

Действительно, при t  0, когда точка М 2 приближается к М 1 , хорда (секущая) , сближается с длиной отрезка дугиs и в пределе s = , а секущая переходит в касательную. Это наглядно подтверждается опытами. Например, искры при заточке инструмента всегда направлены по касательной к точильному кругу. Поскольку, скорость – величина векторная, то модуль ее

.

В некоторых типах ускорителей (например, циклотронах и др.) частицы многократно движутся по замкнутой траектории без остановки. Следовательно, в любой точке траектории модуль вектора мгновенной скорости должен отличаться от нуля. Это заключение подтверждается не только уравнением (15), но и согласуется с понятием средней скалярной скорости (формула 11). Если в уравнении (11) перейти к пределу при t  0, то придется рассматривать такие малые участки пути на траектории s, которые не отличаются от модуля элементарного вектора перемещения . Тогда на основании уравнения (11) можно получить значение мгновенной скалярной скорости

совпадающее с модулем вектора мгновенной скорости
,

так как r = s при t  0.

Одно уравнение вектора мгновенной скорости (15) можно заменить эквивалентной системой трех скалярных уравнений, проекций вектора скорости на оси координат

v x = dx/dt, v y = dy/dt, v z = dz/dt. (16)

Вектор мгновенной скорости связан с его проекциями на оси координат выражением

, (17)

где
– единичные векторы, направленные вдоль осей Х, У,Z соответственно.

По модулю

. (18)

Таким образом, вектор скорости характеризует быстроту изменения перемещения в пространстве по величине и направлению с течением времени. Скорость – функция времени.

1.12. Среднее ускорение

При движении тел скорость в общем случае может изменяться как по величине, так и по направлению.

Примерами такого движения являются движение Солнечной системы вокруг центра нашей Галактики или движение поезда при торможении и т. д. Равномерное движение м. т. по окружности является примером, когда ее скорость изменяется по направлению, оставаясь постоянной по величине. Если м. т. движется по некоторой траектории, изменяя величину и направление скорости, то для характеристики ее движения уже недостаточно знать перемещение и скорость, нужно знать еще и быстроту изменения скорости, т. е. ускорение .

Пусть м. т. в некоторый момент времени t 1 находится в пункте М 1 и движется со скоростью , а в момент времени t 2 – в пункте М 2 – со скоростью (рис. 10).

Перенесем вектор параллельно самому себе в точку М 1 так, чтобы совпали начала векторов и.

Тогда разность векторов иесть вектор изменения (приращения) скорости за промежуток времениt = t 2 – t 1 , т. е.

. (19)

Вектор среднего ускорения равен отношению вектора изменения скорости к промежутку времени, за которое это изменение произошло.

Следовательно,

. (20)

Вектор среднего ускорения совпадает с направлением вектора изменения скорости и, направлен внутрь кривизны траектории.

Одному векторному уравнению (1.20) соответствует система из трех скалярных уравнений для проекций вектора среднего ускорения на оси координат

Модуль вектора среднего ускорения

. (22)

За единицу измерения ускорения в СИ принят метр на секунду в квадрате.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!