Упражнения. Питание. Диеты. Тренировки. Спорт

Мощность тренировочной нагрузки. Мощность тренировочных и соревновательных нагрузок. Эффективное время работы

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Тренировочная нагрузка и характеризующие ее показатели

1. Физическая нагрузка как количественная и качественная мера используемых велосипедистом упражнений (средств)

Нагрузка -- это воздействие физических упражнений на организм спортсмена, вызывающее активную реакцию его функциональных систем, перевод организма на более высокий уровень его энергетических возможностей.

Классификация нагрузок в спорте:

Подразделяются на тренировочные, соревновательные, специфические и неспецифические;

По величине -- на малые, средние, значительные или (околопредельные) и большие (или предельные);

По направленности -- на способствующие совершенствованию двигательных способностей (скоростных, силовых, координационных, выносливости, гибкости) или их компонентов (например, алактатных или лактатных анаэробных возможностей), совершенствующие координационную структуру движений, компоненты психической подготовленности, тактического мастерства;

По координационной сложности -- на связанные с выполнением движений высокой координационной сложности;

По психической напряженности -- в зависимости от требований, предъявляемых к психическим возможностям спортсмена -- на более напряженные и менее напряженные.

Выделяют также нагрузки по принадлежности к тому или иному структурному образованию тренировочного процесса.

В частности, следует различать нагрузки отдельных тренировочных и соревновательных упражнений или их комплексов, нагрузки тренировочных занятий, дней, суммарные нагрузки микро и мезоциклов, периодов и этапов подготовки, макроциклов, тренировочного года.

Величину тренировочных и соревновательных нагрузок можно охарактеризовать с «внешней» и «внутренней» стороны.

«Внешняя» сторона нагрузки в наиболее общем виде может быть представлена показателями суммарного (количественного) объема работы. В их числе: общий объем работы в часах, объем циклической работы (количество занятий, продолжительность в километрах и часах, число повторений, скорость езды, темп педалирования, величина передачи и др.) Для полной характеристики «внешней» стороны тренировочной нагрузки выделяют частные объемы нагрузки, отражающие планирование в общем объеме работы, выполняемой с повышенной интенсивностью или способствующей преимущественному совершенствованию отдельных сторон подготовленности. Для этого определяют, например, процент интенсивности работы в общем ее объеме, соотношение работы, направленной на развитие отдельных качеств и способностей, средств общей и специальной подготовки и др. Для оценки «внешней» стороны нагрузки велосипедистов широко используют показатели ее интенсивности. Мерой интенсивности являются затраты энергии в единицу времени, то есть мощность. Различная интенсивность преодоления отрезков дистанции может мобилизовать те или другие пути энергообразования.

Малая нагрузка обеспечивается выполнением работы, равной 20--25 % объема работы при большой нагрузке. Критерием малой нагрузки является согласованная деятельность опорно-двигательного аппарата, функциональных систем организма и вегетативной нервной системы, то есть образование устойчивого состояния работоспособности.

Средняя нагрузка характеризуется работой, составляющей 40--50 % объема работы при большой нагрузке, выполняется до появления признаков нарушения устойчивого состояния организма.

Значительная нагрузка характеризуется работой в условиях устойчивого состояния, при котором не наблюдается снижения работоспособности. Работа составляет 70--75 % объема работы при большой нагрузке. Критерием значительной нагрузки считают появление стойких признаков компенсируемого утомления.

Большая нагрузка относятся к развивающим нагрузкам, которые характеризуются резко выраженными функциональными сдвигами в организме спортсмена и вызывают резкое снижение работоспособности, вызывают значительный уровень утомления, неспособность спортсмена продолжать работу в заданном режиме. Такие нагрузки по интегральному воздействию на организм могут быть выражены через 100 и 80%. Восстановительный период задействованных функциональных систем соответственно 48-96 и 24-48 ч. Для создания большой нагрузки спортсмену следует задать такой объем работы, который соответствует уровню его подготовленности. Критерием большой нагрузки служит неспособность спортсмена продолжать работу в заданном режиме. Величина тренировочной нагрузки является производной от интенсивности и объема работы. Их увеличение может до определенного момента происходить одновременно. В дальнейшем увеличение интенсивности ведет к уменьшению объема и, наоборот, увеличение объема работы влечет за собой вынужденное снижение ее интенсивности. Под объемом тренировочной нагрузки в занятии обычно понимается продолжительность и суммарное количество работы, выполненное за время отдельного тренировочного занятия.

2. Показатели, характеризующие «внешнюю» и «внутреннюю» стороны нагрузки

Объективными показателями оценки внешней нагрузки являются -- окраска кожи, сосредоточенность, мимика лица, качество выполнения задания, настроение, общее самочувствие.

Однако наиболее полно нагрузка характеризуется с «внутренней стороны», т.е. по реакции организма на выполненную работу, по степени мобилизации функциональных систем организма велосипедиста при выполнении им работы и характеризуются обусловленной ею величиной физиологических, биохимических и других сдвигов в функциональном состоянии органов и систем.

По этому принципу на практике выделяют пять зон тренировочных нагрузок.

1-я зона -- аэробная восстановительная. Ближайший тренировочный эффект связан с повышением ЧСС до 140-145 уд/мин. Потребление кислорода достигает 40-70% от МПК. Обеспечение энергией происходит за счет окисления жиров (50% и более), мышечного гликогена и глюкозы крови. Лактат в крови не превышает 2 ммоль/л. Работа обеспечивается медленными мышечными волокнами (ММВ). Работа в этой зоне выполняется от нескольких минут до нескольких часов. Она стимулирует восстановительные процессы, совершенствует аэробные способности (общую выносливость).

2-я зона -- аэробно развивающая. Ближайший тренировочный эффект связан с повышением ЧСС до 160-175 уд/мин. Лактат в крови до 4 ммоль/л, потребление кислорода от МПК 60-90%. Обеспечение энергией происходит за счет окисления углеводов (мышечного гликогена и глюкозы). Работа обеспечивается медленными мышечными волокнами (ММВ) и быстрыми мышечными волокнами (БВМ) типа «а», способными в меньшей мере окислять лактат, он нарастает от 2 до 4 ммоль/л. Нагрузка стимулирует воспитание специальной выносливости, силовой выносливости. Эта зона характерна для шоссейных гонок.

3-я зона -- смешанная аэробно-анаэробная. Ближайший тренировочный эффект в этой зоне связан с повышением ЧСС до 180--185 уд/мин, лактат в крови до 8--10 ммоль/л, потребление кислорода 80-100% от МПК. Работа обеспечивается медленными и быстрыми мышечными волокнами типа «б», которые не способны окислять лактат, повышается его содержание в мышцах и крови, что рефлекторно вызывает увеличение легочной вентиляции и образование кислородного долга. Эта зона характерна для командных гонок на шоссе. Соревновательная деятельность в этом режиме может продолжаться до 1,5-2 ч.

4-я зона -- анаэробно-гликолитическая. Ближайший тренировочный эффект нагрузок этой зоны связан с повышением лактата в крови от 10 до 20 ммоль/л. ЧСС находится на уровне 180-200 уд/мин. Потребление кислорода снижается от 100 до 80% МПК. Обеспечение энергией происходит за счет углеводов. Работа выполняется всеми тремя типами мышечных единиц. Тренировочная деятельность не превышает 10-15 мин. Соревновательная деятельность в этой зоне продолжается от 20 с. до 6--10 мин. Эта зона характерна в индивидуальной и командной гонке преследования. Основной метод -- метод интегрального интенсивного упражнения. Объем работы в разных видах спорта составляет от 2 до 7%.

5-я зона -- анаэробно-алактатная. Работа кратковременная, не превышает 15-20 с. в одном повторении. Лактат в крови, ЧСС и легочная вентиляция не успевают достигнуть высоких показателей. Потребление кислорода значительно падает. Обеспечение энергией происходит анаэробным путем за счет использования АТФ и КФ, после 10 с. к энергообеспечению начинает подключаться гликолиз, и в мышцах накапливается лактат. Работа обеспечивается всеми типами мышечных единиц. Суммарная тренировочная деятельность не превышает 120-150 с. за одно тренировочное занятие. Она стимулирует воспитание скоростных, скоростно-силовых, максимально-силовых способностей. Эта зона характерна для подготовки спринтеров. Объем работы в разных видах спорта от 1 до 5%.

Внешние и внутренние характеристики нагрузки тесно взаимосвязаны: увеличение объема и интенсивности тренировочной работы приводит к усилению сдвигов в функциональном состоянии различных систем и органов, к возникновению и углублению процессов утомления, замедлению восстановительных процессов. Оценить общий объем и интенсивность нагрузки в годичном цикле, в тренировочном занятии и тренировочном упражнении в целом довольно трудно. Но все же эти параметры измеримы, и их можно планировать и оценивать.

Тренировочный процесс включает в себя и рациональный отдых, во время которого происходит восстановление после нагрузок и оптимизация эффекта нагрузок. Длительность периодов отдыха между прохождением отрезков дистанции принято считать составной частью тренировочной нагрузки, определяющей в значительной мере ее направленность. Продолжительность периодов отдыха устанавливают с учетом скорости восстановления после выполненной работы и поставленных тренером задач в занятии.

В рамках одного занятия следует различать три типа интервалов:

Полные (ординарные) интервалы, гарантирующие к моменту очередного повторения практически такое восстановление работоспособности, которое было до его предыдущего выполнения.

Напряженные (неполные) интервалы, при которых очередная нагрузка попадает на состояние некоторого недовосстановления работоспособности.

-«Минимакс»-интервал -- это наименьший интервал отдыха между упражнениями, после которого наблюдается повышенная работоспособность (суперкомпенсация), наступающая при определенных условиях.

При пассивном отдыхе спортсмен не выполняет никакой работы,

при активном -- заполняет паузы дополнительной деятельностью. Рационально организованный отдых обеспечивает восстановление работоспособности после тренировочных нагрузок и служит одним из средств оптимизации эффекта нагрузок, долговременной адаптации организма к тренировочным нагрузкам. В занятиях на треке преимущественно применяется пассивный отдых, а в тренировочном процессе гонщиков, специализирующихся на шоссе, он используется редко. В качестве активного отдыха целесообразно применять езду на велосипеде или другую малоинтенсивную работу.

Чтобы правильно построить тренировочный процесс, необходимо знать, какое влияние на организм спортсмена оказывают тренировочные и соревновательные нагрузки, различные по величине и направленности, какова динамика и продолжительность процессов восстановления после них.

Учитывая тот факт, что, по мнению многих спортивных специалистов, в настоящее время уже почти полностью исчерпаны резервы повышения тренировочных нагрузок в велосипедном спорте применительно к шоссейным гонкам, поэтому тренерам приходится изыскивать такие методики, которые избирательно нацелены на развитие тех качеств велосипедиста, которые ему необходимы для достижения максимальных результатов с учетом его индивидуальных способностей. Нагрузка, даже при однородной своей структуре, может вызывать различные внутренние сдвиги в организме. Это зависит от индивидуальной работоспособности на момент тренировки и условий внешней среды: температуры и влажности воздуха, силы и направления ветра, профиля и покрытия трассы, высоты над уровнем моря, качества инвентаря, спортивной одежды.

В тех случаях, когда современная организационно-методическая концепция подготовки спортсменов высокого класса предполагает в качестве обязательного условия применение нескольких тренировочных занятий в течение одного дня с различными нагрузками, необходимо знать и учитывать закономерности колебаний функционального состояния организма и физиологические механизмы, обусловливающие эти колебания.

4. Компоненты нагрузки и их влияние на формирование реакций адаптации

Рассматривая особенности срочной и долговременной адаптации в связи с характером применяемых упражнений, следует указать на неодинаковые адаптационные реакции организма при использовании упражнений, вовлекающих в работу различные объемы мышечного массива. Например, при выполнении продолжительных упражнений локального характера, вовлекающих в работу менее 1/3 мышц, работоспособность спортсмена мало зависит от возможностей кислородотранспортной системы, а обусловливается прежде всего возможностями системы утилизации кислорода. В силу этого такие упражнения приводят к возникновению в мышцах специфических изменений, связанных с увеличением количества и плотности функционирующих капилляров, увеличением количества и плотности митохондрий, а также их способности использовать транспортируемый кровью кислород для синтеза АТФ (Ноllmann, Hettinger, 1980). Эффект упражнений локального характера особенно возрастает, если используются методические приемы или технические средства, увеличивающие нагрузку на работающие мышечные группы (Платонов, 1984).

Использованием упражнений частичного характера, вовлекающих в работу до 40--60 % мышечного массива, обеспечивается более широкое воздействие на организм спортсмена, начиная от повышения возможностей отдельных систем (например, кислородтранспортной системы) и заканчивая достижением оптимальной координации двигательных и вегетативных функций в условиях применения тренировочных и соревновательных нагрузок.

Однако наиболее сильное воздействие на организм спортсмена оказывают упражнения глобального характера, вовлекающие в работу свыше 60--70 % мышечного массива. При этом следует учитывать, что центральные адаптационные перестройки, например, эндокринных или терморегуляторных функций, а также мышцы сердца, зависят только от объема функционирующих мышц и не связаны с их локализацией.

Важным моментом обеспечения эффективной адаптации является соответствие применяемых упражнений требованиям результативной соревновательной деятельности конкретного вида спорта. Несоответствие характера упражнений заданному направлению адаптации мышечной ткани приводит к неадекватным специализации изменениям их метаболизма, что подтверждается данными электронно-микроскопических и гистохимических исследований. В частности, у лиц, имеющих структуру мышечной ткани, характерную для спринтеров, но тренирующихся и выступающих как стайеры, в мышечных волокнах отмечается расширение межфибриллярных пространств, вследствие отека и разрушения отдельных миофибрилл, их продольного расщепления, истощение запасов гликогена, разрушение митохондрий. Результатом такой тренировки часто является некроз мышечных волокон. Это в полной мере относится к дисциплинам велосипедного спорта - ВМХ и треку, где недопустимо применение большого объема тренировок аэробной направленности.

У лиц со стайерской структурой мышечной ткани, но тренирующихся и выступающих как спринтеры, в мышечных волокнах наблюдается чрезмерная гипертрофия ряда миофибрилл, отмечаются зоны разрушения, охватывающие

1--3 саркомера мышечных волокон, отдельные волокна находятся в состоянии ярко выраженной контрактуры и др. (Сергеев, Язвиков, 1984).

Особенности срочных адаптационных реакций зависят и от степени освоения применяемых упражнений. Адаптация организма спортсмена к стандартным нагрузкам, связанным с решением известных двигательных задач, сопровождается меньшими сдвигами в деятельности обеспечивающей системы по сравнению с той, где двигательная задача носит вероятностный характер. Более выраженная реакция на такие нагрузки связана с повышенным эмоциональным возбуждением, менее эффективной внутри- и межмышечной координацией, а также координацией двигательной и вегетативных функций (Веrger, 1994, Платонов, 1997).

Рассматривая интенсивность работы как степень напряженности деятельности функциональной системы организма, обеспечивающей эффективное выполнение конкретного упражнения, следует отметить ее исключительно большое влияние на характер энергообеспечения, вовлечение в работу различных двигательных единиц, формирование координационной структуры движений, соответствующей требованиям эффективной соревновательной деятельности.

Рис. 1 Зависимость между скоростью передвижения на велосипеде и потреблением 0 2 у квалифицированных велосипедистов-шоссейников (Rugh, 1974)

Из результатов исследований (Rugh, 1974), проведенных с участием квалифицированных велосипедистов-шоссейников (рис.1.), видим, что, если возрастание скорости передвижения с 10 до 20 км/ч приводит к увеличению V0 2 на 8 мл-кг-мин., то при увеличении скорости с 30 до 40 км-ч, т. е. также на 10 км, VO 2 возрастает уже на 17 мл-кг-мин. Это правомерно не только для работы динамического, но и статического характера. Установлено (Аhiborg еt al., 1972), что силовая работа статического характера до определенной степени напряжения обеспечивается аэробными источниками энергии. Максимальное содержание лактата и пирувата обнаруживается при работе до изнеможения в том случае, если величина напряжения колеблется в пределах 30--60 % максимальной статической силы. При использовании напряжений, составляющих менее 15 % максимальной статической силы, увеличения количества лактата и пирувата не происходило, т. е. работа полностью выполнялась за счет аэробных источников энергии.

Таким образом, подбор интенсивности работы предопределяет характер срочных и долговременных адаптационных реакций системы энергообеспечения. Например, при различной интенсивности выполнения локальных упражнений, вовлекающих небольшие объемы мышечного массива, отмечается принципиально различный прирост периферической (местной) выносливости. Наименьший тренировочный эффект наблюдается при работе с высокой интенсивностью, что обусловливается активизацией больших объемов БС-волокон и небольшой продолжительностью работы. Уменьшение интенсивности работы и одновременно резкое увеличение ее продолжительности способствуют повышению эффективности тренировки. Это имеет принципиальное значение для выбора оптимальных тренировочных средств, направленных на повышение периферической выносливости.

Нагрузки в пределах 90 % V0 2 mах и выше в значительной мере связаны с включением в работу анаэробных источников энергии и охватывают БС-волокна мышц, что подтверждается устранением из них гликогена. Если интенсивность нагрузки не превышает ПАНО, то в работе используются в основном МС-волокна мышц, что является решающим для развития выносливости к длительной работе (Henriksson, 1992; Мохан и др., 2001), как показано на рис. 2. Именно этого не учли в свое время авторы работ (Reindell, Roskamm, Gerschler, 1962), где рекомендовался интервальный метод с «воздействующими» паузами как наиболее эффективный для повышения аэробной производительности. Такая тренировка в первую очередь воздействует на БС-волокна и является значительно менее эффективной для МС-волокон мышц по сравнению с непрерывной. При этом, чем выше интенсивность работы при интервальной тренировке, тем в большей мере совершенствуются анаэробные (алактатные и лактатные) способности и меньше -- аэробные. Интервальный метод, в равной мере повышая аэробные возможности всех типов волокон и одновременно способствуя повышению анаэробных возможностей БС-волокон, уже только поэтому уступает непрерывному методу по эффективности совершенствования аэробной производительности. Уменьшение объема работы наряду с увеличением количества лактата при интервальной тренировке отрицательно влияют на ее эффективность, поскольку известно, что высокие внутриклеточные концентрации лактата могут нарушать структуру и функции митохондрий.

При определении оптимального уровня интенсивности работы, направленной на повышение аэробных возможностей, необходимо следить и за тем, чтобы были обеспечены высокие величины сердечного выброса и систолического объема как важнейших факторов оптимизации адаптационных реакций во всех звеньях кислородтранспортной системы (см. рис. 3.)

Рис. 2. Региональное распределение кровотока в покое и во время выполнения физических упражнений разной интенсивности (Мохан и др., 2001)

В значительной мере особенности адаптации зависят от продолжительности упражнений, их общего количества в программах отдельных занятий или серии занятий, интервалов отдыха между упражнениями. О необходимости строгого планирования и контроля данных компонентов нагрузки для достижения желаемого адаптационного эффекта свидетельствует следующее. Для повышения алактатных анаэробных возможностей, связанных с увеличением резервов макроэргических фосфорных соединений, наиболее приемлемыми являются кратковременные нагрузки (5 -- 10 с) предельной интенсивности.

Рис. 3. Объем левого желудочка сердца в состоянии покоя и при выполнении физических упражнений различной интенсивности (Poliner et al., 1980)

Значительные паузы (до 2--3 мин) позволяют восстановить макроэргические фосфаты и избежать значительной активации гликолиза при выполнении очередных порций работы. Однако здесь следует учесть, что такие нагрузки, обеспечивая предельную активацию алактатных источников энергии, не способны привести к более чем 50 % исчерпанию алактатных энергетических депо мышц. К практически полному исчерпанию алактатных анаэробных источников во время нагрузки, а следовательно, и к повышению резервов макроэргических фосфатов приводит работа максимальной интенсивности в течение 60--90 с, т. е. такая работа, которая является высокоэффективной для совершенствования процесса гликолиза (Di Ргаmpero, DiLimas, Sassi, 1980).

Учитывая то, что максимум образования лактата обычно отмечается через 40--45 с, а работа преимущественно за счет гликолиза обычно продолжается в течение 60--90 с, именно работа такой продолжительности используется при повышении гликолитических возможностей.

Рис. 4. Максимальная концентрация лактата в крови у одного и того же испытуемого спортсмена после 13 различных вариантов максимальной нагрузки на тредбане (Hermansen, 1972)

Паузы отдыха не должны быть продолжительными, чтобы величина лактата существенно не снижалась. Это будет способствовать как повышению мощности гликоли-тического процесса, так и увеличению его емкости.

Количество лактата в мышцах при работе максимальной интенсивности существенно зависит от ее продолжительности. Максимальные величины лактата наблюдаются при длительности работы в пределах 1,5--5,0 мин; дальнейшее увеличение продолжительности работы связано со значительным снижением концентрации лактата. Рис 4

Это должно быть учтено при выборе продолжительности работы, направленной на повышение лактатной анаэробной производительности.

Однако следует учитывать, что концентрация лактата при выполнении упражнений в интервальном режиме оказывается гораздо выше, чем при непрерывной работе (рис 5), а постоянное возрастание лактата от повторения к повторению при выполнении кратковременных упражнений свидетельствует о возрастающей роли гликолиза при увеличении количества повторений. Кратковременные нагрузки, выполняемые с максимальной интенсивностью и приводящие к снижению работоспособности вследствие прогрессирующего утомления, связаны с мобилизацией запасов гликогена в мышечных БС-волокнах, а снижение концентрации гликогена в МС-волокнах является незначительным. При выполнении продолжительной работы ситуация меняется на противоположную: исчерпание запасов гликогена в первую очередь происходит в МС-волокнах. (рис 6.) Относительно кратковременные интенсивные нагрузки характеризуются быстрым расходованием гликогена мышц и незначительным использованием гликогена печени, поэтому при таких систематических нагрузках содержание гликогена в мышцах возрастает, в то время как в печени, как и общий запас гликогена, почти не изменяется. Увеличение запасов гликогена в печени связано с применением продолжительных нагрузок умеренной интенсивности или выполнением большого количества скоростных упражнений в программах отдельных занятий.

Продолжительная нагрузка аэробного характера приводит к интенсивному вовлечению жиров в обменные процессы, которые становятся главным источником энергии. Например, во время бега на дистанцию 100 км общие затраты энергии в среднем составляют 29300 кДж (7000 ккал). Половина этой энергии обеспечивается окислением углеводов и жирных кислот, 24 % всего потребления энергии -- за счет внутриклеточных резервов углеводов и жиров, остальную часть субстратов мышечные клетки получают с кровью из депо подкожной жировой основы, печени и других органов (Oberholer et alt., 1976).

Рис. 6. Концентрация гликогена в мышечных волокнах при выполнении кратковременных интенсивных (а) и длительных умеренных (б) упражнений (Волков и др., 2000)

Различные составляющие аэробной производительности могут совершенствоваться лишь при продолжительных однократных нагрузках или при большом количестве кратковременных упражнений. В частности, локальная аэробная выносливость может быть полноценно повышена при выполнении длительных нагрузок, превышающих по продолжительности 60 % предельно доступных. В результате такой тренировки в мышцах происходит комплекс гемодинамических и метаболических изменений. Гемодинамические изменения преимущественно выражаются в улучшении капилляризации, внутримышечном перераспределении крови; метаболические -- в увеличении внутримышечного гликогена, гемоглобина, увеличении количества и объема митохондрий, повышении активности оксидативных ферментов и удельного веса окисления жиров по сравнению с углеводами (Dе Vries, Housh, 1994).

Длительная работа определенной направленности в программах отдельных занятий приводит к снижению ее тренирующего эффекта или существенному изменению направленности преимущественного воздействия. Так, продолжительная работа аэробного характера связана с постепенным снижением максимально возможных показателей потребления кислорода. Аэробная нагрузка (велоэргометрическая) в течение 70--80 мин при интенсивности работы, составляющей 70--80 % от У0 2 тах, приводит к снижению потребления кислорода в среднем на 8 %, нагрузка в течение 100 мин -- на 14 % (Ноllmann, Hettinger, 1980). Уменьшение потребления кислорода сопровождается уменьшением систолического объема крови на 10--15 %, увеличением ЧСС на 15--20 %, снижением среднего артериального давления на 5--10 %, возрастанием минутного объема дыхания на 10--15 % (Hoffman, 2002; Wilmore, Costill, 2004).

Однако следует учитывать, что по мере выполнения длительной работы различной интенсивности происходят не столько количественные, сколько качественные изменения в деятельности органов и систем организма. Например, при выполнении длительной непрерывной или интервальной работы аэробной направленности сначала опустошаются запасы гликогена в МС-волокнах и лишь в конце ее при развитии утомления -- в БС-волокнах (Shephard, 1992; Platonov, Bulatoba 2003). У квалифицированных спортсменов работа аэробного характера в течение двух часов приводит к истощению гликогена в МС-волокнах. При увеличении продолжительности выполняемой работы постепенно истощаются запасы гликогена и в БС-волокнах. Резкое повышение интенсивности тренировочных воздействий (например, многократное повторение 15--30-секундных упражнений с высокой интенсивностью и короткими паузами) связано с первоочередным опустошением запасов гликогена в БС-волокнах и лишь после большого числа повторений истощаются запасы гликогена в МС-волокнах (Henriksoon, 1992). Для достижения необходимого тренировочного эффекта важным является также выбор оптимальной продолжительности тренировочных нагрузок и частоты их применения. Исследования показали, что для формирования периферической адаптации, обеспечивающей повышение уровня аэробной выносливости у тренированных лиц, наиболее эффективными являются шестиразовые в неделю (рис 7) нагрузки предельной продолжительности (рис 8).

Рис. 7. Влияние частоты тренировочных занятий (6 раз в неделю -- /, 3 раза в неделю -- 2) на развитие аэробной местной динамической мышечной выносливости (Ikai, Taguchi, 1969)

Рис. 8. Влияние продолжительности работы в отдельных тренировочных занятиях (1 -- предельная; 2 -- 2/3 предельной; 3 -- 1/2 предельной) на развитие аэробной периферической динамической мышечной выносливости (Ikai, Taguchi, 1969)

Трехразовые нагрузки, равно как и нагрузки, продолжительность которых составляет 1/2 или 2/3 максимально доступной, приводят к меньшему тренировочному эффекту.

Вполне понятно, что различия в тренировочном эффекте нагрузок разной продолжительности и применяющихся с разной частотой в значительной мере зависят от тренированности и квалификации спортсменов. Плохо тренированные или неквалифицированные спортсмены эффективно адаптируются даже при планировании двух-, трехразовых нагрузок в неделю относительно небольшой продолжительности. Таким образом, комплексное планирование компонентов нагрузки, основывающееся на объективных знаниях, является действенным инструментом формирования заданной срочной и долговременной адаптации.

5.Специфичность реакций адаптации организма спортсмена на нагрузки

Применительно к различным видам физических нагрузок, используемых в современной тренировке, возникают специфические адаптационные реакции, обусловленные особенностями нейрогуморальной регуляции, степенью активности различных органов и функциональных механизмов.

При эффективном приспособлении к заданным нагрузкам, имеющим конкретные характеристики, нервные центры, отдельные органы и функциональные механизмы, относящиеся к различным анатомическим структурам организма, объединяются в единый комплекс, что и является той основой, на которой формируются срочные и долговременные приспособительные реакции.

Специфичность срочной и долговременной адаптации ярко проявляется даже при нагрузках, характеризующихся одинаковой преимущественной направленностью, продолжительностью, интенсивностью, а различающихся только характером упражнений. При специфической нагрузке спортсмены в состоянии проявить более высокие функциональные возможности по сравнению с неспецифической нагрузкой. В качестве примера, подтверждающего это положение, на рис. 9. представлены индивидуальные величины V0 2 max у велогонщиков-шоссейников высокой квалификации при тестировании на велоэргометре и тредбане. Повышенные возможности вегетативной нервной системы при выполнении специфических нагрузок в значительной мере стимулируются формированием соответствующих психических состояний в ответ на конкретные средства тренировки.

Рис. 9. Величины максимального поглощения кислорода у высококвалифицированных велосиледистов-шоссейников при нагрузке на велоэргометре и тредбане (Hollmann, Hettinger, 1980)

Известно, что психические состояния как динамическое воздействие психических процессов представляют собой подвижную систему, образующуюся в соответствии с требованиями, диктуемыми конкретной деятельностью. В условиях напряженной физической деятельности предельные требования часто предъявляются к психическим процессам. В ответ на определенные, часто возникающие интенсивные раздражители формируется психическая устойчивость к стрессу, проявляющаяся в перераспределении функциональных возможностей -- повышении способностей психики наиболее значимых для достижения поставленной цели при выраженном снижении других, менее значимых. При этом возникает синдром «сверхпроявлений» психики в направлении информационно-поисковых процессов, мотивации, произвольного контроля за поведением (Родионов, 1973; Кеllman, Каllus, 2001).

Наряду с более высокими предельными величинами сдвигов в деятельности функциональных систем, несущих основную нагрузку при специфических нагрузках по сравнению с неспецифическими, отмечают быстрое развертывание необходимого уровня функциональной активности, т. е. интенсивное врабатывание при использовании привычных нагрузок (например, быстрая приспособляемость сердца спортсмена высокого класса, специализирующегося в горнолыжном спорте, к соревновательной нагрузке) и исключительно высокая активность деятельности сердца как перед стартом, так и в процессе прохождения дистанции. Обращают внимание значения ЧСС перед стартом, быстрое достижение максимальных значений и их более высокий уровень по сравнению с работой максимальной интенсивности на велоэргометре.

Избирательность воздействия нагрузок может быть убедительно продемонстрирована результатами эксперимента, в котором испытуемые в течение 6 недель выполняли продолжительную аэробную работу на велоэргометре, работая одной ногой (Неппкззоп, 1992). После окончания тренировки с помощью артериальной и венозной катетеризации и мышечной биопсии исследовался энергетический метаболизм при выполнении вело-эргометрической нагрузки с интенсивностью 70 % V0 2 max . В тренированной ноге по сравнению с нетренированной отмечалось значительно меньшее выделение лактата, а также значительно больший процент производства энергии за счет сгорания жира. Эти данные должны быть учтены при стремлении использовать эффект перекрестной адаптации при подготовке квалифицированных спортсменов.

В специальной литературе широко освещен практический аспект явления перекрестной адаптации, связанной с переносом приспособительных реакций, приобретенных в результате действия одних раздражителей на действие других. Адаптация к мышечной деятельности может сопровождаться развитием адаптации и к другим раздражителям, например к гипоксии, охлаждению, перегреванию и др. (Русин, 1984).

В основе перекрестной адаптации лежит общность требований, предъявляемых к организму различными раздражителями. В частности, адаптация к гипоксии -- это, прежде всего, «борьба за кислород» и более эффективное его использование, а адаптация к повышенной мышечной деятельности также приводит к увеличению возможностей транспорта кислорода и окислительных механизмов. Это касается не только дыхательного, но и анаэробного ресинтеза АТФ. При адаптации к холоду при мышечной деятельности увеличиваются потенциальные возможности аэробного и гликолитического окисления углеводов, а также метаболизирования липидов и окисления жирных кислот. При адаптации к перегреванию важнейшее значение имеет достигаемое при систематической мышечной активности возрастание способностей митохондрий как к большим степеням разобщения дыхания и фосфорилирования, так и к более значительным степеням сопряжения их (Яковлев, 1974).

Явления перекрестной адаптации, играющие определенную роль для лиц, тренирующихся с целью укрепить здоровье и улучшить физическую подготовленность, не могут рассматриваться в качестве серьезного фактора, обеспечивающего рост тренированности у квалифицированных спортсменов. Даже у нетренированных лиц прирост физических качеств, например силы, как следствие перекрестной адаптации, явно незначителен по сравнению с уровнем адаптационных перестроек благодаря непосредственной тренировке.

Об ограниченных возможностях явления перекрестной адаптации применительно к задачам спорта высших достижений свидетельствуют и многие другие экспериментальные данные.

Исследования, в которых осуществлялась тренировка одной ноги, показали, что локальная адаптация проявляется только на уровне ноги, подверженной тренировке. Две группы испытуемых тренировались на велоэргометре в течение 4 недель по 4--5 занятий, выполняя работу одной ногой. Тренировка испытуемых была направлена на развитие выносливости аэробного характера. В результате тренировки у испытуемых обеих групп увеличилось V0 2 max, уменьшилась ЧСС и отмечался более низкий уровень лактата при стандартной субмаксимальной нагрузке. Эти изменения были значительнее выражены у лиц, тренировавшихся на выносливость. Одновременно у лиц, входивших во вторую группу, значительно, по сравнению с испытуемыми первой группы, возросла активность сукцинатдегидрогеназы, экономичность расходования гликогена. Все эти позитивные изменения коснулись преимущественно тренированной ноги. В частности, выделение лактата во время работы субмаксимальной интенсивности отмечалось лишь в нетренированной ноге. Различия авторы объяснили в первую очередь повышением активности аэробных ферментов и улучшением капилляризации тренировочных мышц.

Специфичность адаптации к конкретным физическим нагрузкам обусловливается в большей мере особенностями сократительной активности мышц, чем внешними стимулами, в частности, изменением гормональной среды. Это видно из того, что митохондриальная адаптация ограничивается мышечными волокнами, участвующими в сокращении. Например, у бегунов и велосипедистов повышение содержания митохондрий ограничивается мышцами нижних конечностей; если тренируется одна конечность, адаптация ограничена лишь ее пределами (Wilmore, Costill, 2004). Было также показано, что адаптационные изменения содержания митохондрий могут быть вызваны упражнениями, несмотря на отсутствие тиреоидных или гипофизарных гормонов (Holloszy, Соу1е, 1984).

Специфичность адаптации проявляется по отношению к различным физическим качествам. Об этом свидетельствуют данные, согласно которым ловкость в основном возрастает по отношению к показателям той руки, которая была подвергнута специальной тренировке (рис 10). Интересно, что максимальный эффект наблюдается только при определенном объеме работы, превышение которого отрицательно сказывается на протекании адаптационных реакций. Аналогичные выводы сделал и В.И. Лях (1989), изучавший структуру и взаимосвязь различных видов координационных способностей человека и показавший их относительную независимость друг от друга.

Рис. 10. Прирост ловкости тренируемой (7) и нетре-нируемой (2) рук в результате шестинедельной тренировки в зависимости от объема выполняемой работы (Hettinger, Hollmann, 1964)

Рис. 11.. Объемное содержание митохондрий в трех типах мышечных волокон у не занимающегося спортом (I), студента спортивного вуза (II) и тренированного на выносливость спортсмена (III) (Hollmann, Hettinger, 1980)

Специфичность воздействия тренировки на выносливость в связи с вовлечением в работу волокон разного типа и их адаптационными резервами с точки зрения увеличения объемного содержания митохондрий проявляется в следующем: в БСб-волокнах объемное содержание митохондрий практически одинаково у нетренированных и тренированных на выносливость лиц. В БСа-волокнах, особенно в МС-волокнах, тренированных лиц объемное содержание митохондрий существенно превышает показатели лиц, не тренированных на выносливость (рис 11.).

Таким образом, при подготовке спортсменов высокого класса следует ориентироваться на средства и методы, обеспечивающие адекватность тренировочных воздействий на сдвиги в деятельности функциональных систем,

динамической и кинематической структуре движений, особенности психических процессов при эффективной соревновательной деятельности.

6.Воздействие нагрузок на организм спортсменов различной квалификации и подготовленности

Срочная и долговременная адаптация спортсменов значительно изменяется под влиянием уровня их квалификации, подготовленности и функционального состояния. При этом одна и та же по объему и интенсивности работа вызывает различную реакцию. Если реакция на стандартную работу у мастеров спорта выражена несущественно -- утомление или сдвиги в деятельности несущих основную нагрузку функциональных систем невелики, восстановление протекает быстро, то у менее квалифицированных спортсменов такая же работа вызывает намного более бурную реакцию: чем ниже квалификация спортсмена, тем в большей степени выражено утомление и сдвиги в состоянии функциональных систем, наиболее активно участвующих в обеспечении работы, продолжительнее восстановительный период (рис 12.). При предельных нагрузках у квалифицированных спортсменов отмечаются более выраженные реакции.

При предельных нагрузках у тренированного человека потребление кислорода может превышать 6 л-мин -1 , сердечный выброс -- 44--47 л-мин" 1 , систолический объем крови -- 200--220 мл, т. е. в 1,5--2 раза выше, чем у нетренированных лиц. У тренированных людей по сравнению с нетренированными проявляется значительно более выраженная реакция симпато-адреналовой системы. Все это обеспечивает человеку, адаптированному к физическим нагрузкам, большую работоспособность, проявляющуюся в увеличении интенсивности и длительности работы.

У спортсменов, тренированных к напряженной работе аэробного характера, отмечается значительное увеличение васкуляризации мышц за счет увеличения количества капилляров в мышечной ткани и открытия потенциальных коллатеральных сосудов, что приводит к увеличению кровотока при напряженной работе. Одновременно при стандартных нагрузках у тренированных лиц по сравнению с нетренированными отмечается меньшее снижение притока крови к не работающим мышцам, печени и другим внутренним органам. Это связано с усовершенствованием центральных механизмов дифференцированной регуляции кровотока, увеличением васкуляризации мышечных волокон, повышением способности мышечной ткани утилизировать кислород из крови. Одновременно при стандартных нагрузках у тренированных лиц по сравнению с нетренированными отмечается меньшее снижение притока крови к не работающим мышцам, печени и другим внутренним органам. Это связано с усовершенствованием центральных механизмов дифференцированной регуляции кровотока, увеличением васкуляризации мышечных волокон, повышением способности мышечной ткани утилизировать кислород из крови.

Рис. 12. Реакция организма спортсменов низкой (7), средней (2) и высокой квалификации (3) на работу, одинаковую по объему и интенсивности

Рис. 13. Реакция организма спортсменов высокой (1) и низкой (2) квалификации на предельную нагрузку

У спортсменов высокого класса при более выраженной реакции на предельную нагрузку восстановительные процессы после нее протекают интенсивнее. Если у спортсменов не высокой квалификации восстановление работоспособности после тренировочных занятий с большими нагрузками смешанного аэробно-анаэробного характера может затянуться до 3--4 суток, то у мастеров спорта восстановительный период в 2 раза короче. И это при условии, что суммарный тренировочный объем у них на много больше по сравнению со спортсменами невысокой квалификации (рис. 13.). Важно также, что у спортсменов высокой квалификации большие сдвиги в деятельности вегетативной нервной системы при предельной нагрузке сопровождаются более результативной работой, что проявляется в ее экономичности, эффективности межмышечной и внутримышечной координации. Этот эффект отмечается даже в тех случаях, когда различия в квалификации спортсменов не очень велики.

Стандартные и предельные нагрузки вызывают неодинаковые по величине и характеру реакции на различных этапах тренировочного макроцикла, а также если их планируют при не восстановившемся уровне функциональных возможностей организма после предшествовавших нагрузок. Так, в начале первого этапа подготовительного периода реакция организма спортсмена на стандартные специфические нагрузки выражена в большей мере по сравнению с показателями, регистрируемыми на втором этапе подготовительного и в соревновательном периодах. Следовательно, прирост специальной тренированности приводит к существенной экономизации функций при выполнении стандартной работы. Предельные нагрузки, наоборот, связаны с более выраженными реакциями по мере роста тренированности спортсменов.

Рис 14. Реакция функциональных систем организма велосипедистов в начале и конце гонки (Михайлов, 1971)

Выполнение одной и той же работы в разных функциональных состояниях приводит к различным реакциям со стороны функциональных систем организма. Примером могут служить результаты исследований, полученные при моделировании условий командной гонки преследования на треке: выполнение работы, одинаковой по мощности и продолжительности, в условиях утомления приводит к резкому увеличению сдвигов в деятельности функциональных систем (рис. 14). Особенно строго следует контролировать функциональное состояние спортсменов при планировании работы, направленной на повышение скоростных и координационных способностей. Работу, направленную на повышение этих качеств, следует проводить лишь при полном восстановлении функциональных возможностей организма, определяющих уровень проявления данных качеств. В случае если скоростные нагрузки или нагрузки, направленные на повышение координационных способностей, выполняются при сниженных функциональных возможностях по отношению к максимальному проявлению данных качеств, эффективной адаптации не происходит. Более того, могут образоваться относительно жесткие двигательные стереотипы, ограничивающие прирост скоростных и координационных способностей (Платонов, 1984).

Нагрузки, характерные для современного спорта, приводят к исключительно высоким спортивным результатам, бурно протекающей и достигающей трудно предсказуемых величин долговременной адаптации. К сожалению, эти нагрузки часто являются и причиной угнетения адаптационных возможностей, прекращения роста результатов, сокращения продолжительности выступления спортсмена на уровне высших достижений, появления предпатологических и патологических изменений в организме (рис. 15).

Эффективная адаптация организма спортсменов к нагрузкам отмечается во второй и первой части третьей зон взаимодействия стимула и реакции организма. На границе третьей и четвертой зон замедляется прирост функций с включением компенсаторных защитных механизмов. Переход в четвертую зону приводит к закономерному снижению функциональных возможностей спортсменов и возникновению синдрома перетренированности (Ширковец, Шустин, 1999).

Рис. 15. Схема динамики взаимодействия тренировочных нагрузок и функционального потенциала организма спортсменов в различных зонах (Ширковец, Шустин, 1999)

В начале целенаправленной тренировки процесс адаптации протекает интенсивно. В дальнейшем, по мере повышения уровня развития двигательных качеств и возможностей различных органов и систем, темпы формирования долговременных адаптационных реакций существенно замедляются. Эта закономерность проявляется на отдельных этапах подготовки в пределах тренировочного макроцикла и в течение многолетней подготовки.

Расширение зоны функционального резерва органов и систем организма у квалифицированных и тренированных спортсменов связано с сужением зоны, стимулирующей дальнейшую адаптацию: чем выше квалификация спортсмена, тем уже диапазон функциональной активности, способной стимулировать дальнейшее протекание приспособительных процессов (рис 16). На ранних этапах многолетней подготовки -- начальной подготовки, предварительной базовой подготовки -- следует как можно шире использовать средства, находящиеся в нижней половине зоны, стимулирующей долговременную адаптацию. Это является залогом расширения данной зоны на последующих этапах. Широкое использование на ранних этапах многолетней подготовки средств, находящихся в верхней половине зоны, может резко сократить ее на последующих этапах и таким образом свести к минимуму арсенал методов и средств, способных стимулировать долговременную адаптацию на заключительных, наиболее ответственных этапах многолетней подготовки.

Рис. 16. Соотношение между зоной функционального резерва (1) и зоной, стимулирующей дальнейшую адаптацию (2): а -- у лиц, не занимающихся спортом; б -- у спортсменов средней квалификации; s -- у спортсменов международного класса (Платонов, 1997)

7.Реакции организма спортсмена на соревновательные нагрузки

Современная соревновательная деятельность спортсменов высокого класса исключительно интенсивна; велосипедисты-трековики -- 160 раз и более, у велосипедистов-шоссейников планируется в течение года до 100--150 и более соревновательных дней и т. д. Столь высокий объем соревновательной деятельности обусловлен не только необходимостью успешного выступления в различных соревнованиях, но и использованием их как наиболее мощного средства стимуляции адаптационных реакций и интегральной подготовки, позволяющей объединить весь комплекс технико-тактических, функциональных, физических и психических предпосылок, качеств и способностей в единую систему, направленную на достижение запланированного результата. Даже при оптимальном планировании тренировочных нагрузок, моделирующих соревновательные, и при соответствующей мотивации спортсмена на их эффективное выполнение, уровень функциональной активности регуляторных и исполнительных органов оказывается значительно ниже, чем в соревнованиях. Только в процессе соревнований спортсмен может выйти на уровень предельных функциональных проявлений и выполнить такую работу, которая во время тренировочных занятий оказывается непосильной. В качестве примера приводим данные, полученные у спортсменов высокой квалификации при выполнении однократной нагрузки (рис 17).

Рис. 17. Реакция организма велосипедиста высокой квалификации (индивидуальная гонка преследования на 4 км на треке) на нагрузку: 1 -- велоэргометрическая ступенчатая; 2 -- контрольные соревнования; 3 -- главные соревнования сезона; а -- ЧСС, уд-мин" 1 ; б -- лактат, ммоль-л"

Создание микроклимата соревнований при выполнении комплексов тренировочных упражнений и программ занятий способствует приросту работоспособности спортсменов и более глубокой мобилизации функциональных резервов их организма.

О том, что условия соревнований способствуют более полному использованию функциональных резервов организма по сравнению с ус-ловиями тренировки, свидетельствуют многие исследования. При контрольных тренировках накопление лактата в мышцах происходит гораздо меньше, чем при прохождении тех же дистанций в условиях соревнований.

Соревновательные нагрузки в велосипедном спорте (длительные шоссейные гонки) способны привести к существенным патологическим нарушениям в мышцах, несущих основную нагрузку, чего обычно не наблюдается в тренировочном процессе.

В мышцах, несущих основную нагрузку выявлены повреждения сократительного аппарата (повреждения 2-дисков, лизисмиофибрилл, возникновение контрактур), митохондрий (разбухание, кристаллические включения), отмечены разрывы сарколеммы, некроз клеток и воспаления и др. Указанные травматические признаки исчезают не ранее, чем через 10 дней после соревнований. Исследованиями показано, что при повторном тестировании в обычных условиях колебания силы при повторных измерениях обычно не превышают 3--4 %. Если повторные измерения выполняются в соревновательных условиях или при соответствующей мотивации, прирост силы может составить 10--15 % (Ноllmann, Hettinger, 1980), в отдельных случаях -- 20 % и более. Эти данные требуют изменения еще бытующих представлений о соревнованиях как о простой реализации того, что заложено в процессе тренировки. Ошибочность этих представлений очевидна, поскольку наивысшие достижения спортсмены показывают в главных соревнованиях. При этом, чем выше ранг соревнований, конкуренция в них, внимание к соревнованиям со стороны болельщиков, прессы, тем более высокими оказываются спортивные результаты. Это, несмотря на то, что в условиях контрольных соревнований можно избежать многих факторов, казалось бы, создающих помехи для эффективной соревновательной деятельности. Однако во второстепенных соревнованиях отсутствует один из решающих факторов, определяющий уровень результатов в спорте высших достижений, -- предельная мобилизация психических возможностей. Хорошо известно, что результаты любой деятельности спортсмена, особенно связанной с экстремальными ситуациями, зависят не только от совершенства его умений и навыков, уровня развития физических качеств, но и от его характера, силы устремлений, решимости действий, мобилизации воли. При этом, чем выше класс спортсмена, тем большую роль для достижения высоких спортивных результатов играют его психические возможности, способные существенно повлиять на уровень функциональных проявлений (Цзен, Пахомов, 1985).

...

Подобные документы

    Уход за телом, полостью рта и зубами. Комплекс упражнений для отдыха мышц шеи и улучшения кровообращения мозга. Понятие "нагрузки" в спорте. Гигиенические основы закаливания. Регулирование интенсивности воздействия физической нагрузки на организм.

    реферат , добавлен 22.11.2011

    Характер упражнений, интенсивность работы, число повторений упражнений, продолжительность пауз для отдыха. Планирование и учет при определении тренировочных нагрузок. Влияние упражнений на формирование структурных и функциональных изменений в организме.

    реферат , добавлен 10.11.2009

    Принцип реагирования живой системы. Организм человека как функциональная система. Понятие адаптации организма спортсмена, гомеостаз внутренней среды. Автоматизм работы систем организма. Морфологические проявления компенсаторно-приспособительных реакций.

    реферат , добавлен 24.11.2009

    Физическая нагрузка как величина воздействия физических упражнений на человека. Интенсивность, длительность и частота как составляющие объема тренировочной нагрузки. Главные признаки утомления. Типы интервалов отдыха. Варианты построения занятия.

    курсовая работа , добавлен 23.12.2014

    Артериальное давление и частота сердечных сокращений как важнейшие интегральные показатели функционального состояния организма. Функциональные сдвиги при нагрузках постоянной мощности. Оценка влияния физической нагрузки на гемодинамические константы.

    курсовая работа , добавлен 11.09.2012

    Динамика функций организма спортсмена при адаптации и ее основные стадии. Физиологические основы адаптации организма спортсмена к физическим нагрузкам. Стадия физиологического напряжения организма. Адаптационные изменения в системах организма.

    контрольная работа , добавлен 24.12.2013

    Тренировочные и соревновательные нагрузки и восстановление. Питьевой режим спортсмена. Фармакологические средства профилактики переутомления и восстановления спортивной работоспособности. Препараты, влияющие на энергетические и метаболические процессы.

    дипломная работа , добавлен 25.05.2015

    Понятие адаптации в спортивной деятельности. Особенности и формы проявления адаптации при интенсивной физической нагрузке. Биохимические механизмы адаптации к мышечной работе. Приспособление организма к факторам, вызывающим напряженную мышечную работу.

    курсовая работа , добавлен 31.03.2015

    Физическая нагрузка и ее значения в тренировочном процессе. Эффективность физических нагрузок. Выбор оптимальных нагрузок, их виды. Интенсивность нагрузок и методы их определения. Пример нагрузок для самостоятельных занятий по развитию качества силы.

    реферат , добавлен 12.12.2007

    Рассмотрение теории адаптации как совокупности знаний о приспособлении организма человека к условиям окружающей среды. Проявления адаптации к физическим нагрузкам в спорте. Реакции адаптации при мышечной деятельности. Функциональные возможности организма.

Во время выполнения тренировочных нагрузок эненгообеспечение работающих мышц осуществляется тремя путями, в зависимости от интенсивности работы: 1)сгорание (окисление) углеводов (гликогена) и жиров при участии кислорода – аэробное энергообеспечение; 2)расщепление гликогена – анаэробно-гликолитическое энергообеспечение 3)расщепление креатинфосфата. В теории спорта и спортивной практике принята следующая классификация тренировочных нагрузок, в зависимости от их интенсивности и характера физиологических сдвигов в организме спортсмена, при выполнении соответствующей нагрузки:

1-я зона интенсивности – аэробная восстановительная («фоновые нагрузки»: разминка, заминка, восстановительные занятия);

2-я зона интенсивности – аэробная развивающая;

3-я зона интенсивности – смешанная аэробно-анаэробная;

4-я зона интенсивности – анаэробно-гликолитическая;

5-я зона интенсивности – анаэробно-алактатная.

Рассмотрим каждую зону интенсивности более подробно.

Первая зона интенсивности. Аэробная восстановительная. Тренировочные нагрузки в этой зоне интенсивности используются как средства восстановления после тренировок с большой и значительной нагрузками, после соревнований, в переходном периоде . Этой зоне соответствуют и так называемые «фоновые нагрузки».

Интенсивность выполняемых упражнений умеренная (около порога аэробного обмена). Частота сердечных сокращений (ЧСС) – 130-140 ударов в минуту (уд/мин.). Концентрация молочной кислоты в крови (лактат) – до 2-3 миллимолей на литр (Мм/л). Уровень кислородного потребления 50-60% от МПК (максимального потребления кислорода). Продолжительность работы от 20-30 минут до 1 часа. Основные источники энергии (биохимические субстраты) – углеводы (гликоген) и жиры.

Вторая зона интенсивности. Аэробная развивающая. Тренировочная нагрузка в этой зоне интенсивности применяется для выполнения упражнений большой продолжительности с умеренной интенсивностью . Такая работа необходима для увеличения функциональных возможностей сердечно-сосудистой и дыхательной систем, а также для поднятия уровня общей работоспособности.

Интенсивность выполняемых упражнений – до уровня порога анаэробного обмена , то есть концентрация молочной кислоты в мышцах и крови – до 20 Мм/л. ; ЧСС – 140-160 уд/мин. Уровень потребления кислорода от 60 до 80% от МПК.

Скорость передвижения в циклических упражнениях 50-80% от максимальной скорости (на отрезке, продолжительностью 3-4 секунды, преодолеваемого с хода с максимально возможной скоростью в данном упражнении). Биоэнергетическое вещество – гликоген.

При выполнении тренировочных нагрузок в этой зоне интенсивности применяется непрерывный и интервальный методы . Продолжительность работы при выполнении тренировочной нагрузки непрерывным методом составляет до 2-3 часов и более . Для повышения уровня аэробных возможностей широко используется непрерывная работа с равномерной и переменной скоростью .

Непрерывная работа с переменной интенсивностью предполагает чередование малоинтенсивного отрезка (ЧСС 140-145 уд/ мин.) и интенсивного отрезка (ЧСС 160-170 уд/мин.).

Применяя интервальный метод, продолжительность отдельных упражнений может составлять от 1-2 мин. до 8-10 мин. Интенсивность отдельных упражнений можно определять по ЧСС (к концу выполняемого упражнения ЧСС должна быть 160-170 уд/мин.). Продолжительность интервалов отдыха также регламентируется по ЧСС (к концу паузы отдыха ЧСС должна быть 120-130 уд/мин.). Применение интервального метода очень эффективно для увеличения способности к максимально быстрому развёртыванию функциональных возможностей систем кровообращения и дыхания. Это объясняется тем, что методика проведения интервальной тренировки предполагает частую смену интенсивной работы пассивным отдыхом. Поэтому на протяжении одного занятия многократно «включаются» и активизируются до околопредельных величин деятельность систем кровообращения и дыхания, что способствует укорочению процесса врабатывания.

Непрерывный метод тренировки способствует совершенствованию функциональных возможностей кислородтранспортной системы, улучшению кровоснабжения мышц. Применение непрерывного метода обеспечивает развитие способности к длительному удержанию высоких величин потребления кислорода.

Третья зона интенсивности. Смешанная аэробно-анаэробная. Интенсивность выполняемых упражнений должна быть выше скорости порога анаэробного обмена (ПАНО), ЧСС – 160-180 уд./мин. Концентрация молочной кислоты в крови (лактат) до 10-12 м-м/л. Уровень потребления кислорода приближается к максимальному (МПК). Скорость выполнения циклических упражнений – 85-90% от максимальной скорости. Основное биоэнергетическое вещество – гликоген (его окисление и расщепление).

При выполнении работы в этой зоне, наряду с максимальной интенсификацией аэробной производительности, происходит значительная интенсификация анаэробно-гликолитических механизмов энергообразования.

Основные методы тренировки: непрерывный метод с равномерной и переменной интенсивностью и интервальный метод. При выполнении работы интервальным методом, продолжительность отдельных упражнений составляет от 1-2 мин. до 6-8 мин. Интервалы отдыха регламентируются по ЧСС (в конце паузы отдыха ЧСС – 120 уд/мин.) или до 2-3 мин. Продолжительность работы в одном занятии до 1-1,5 часов.

Четвёртая зона интенсивности. Анаэробно-гликолитическая. Интенсивность выполняемых упражнений составляет 90-95% от максимально доступной. ЧСС свыше 180 уд/мин. Концентрация молочной кислоты в крови достигает предельных величин – до 20 Мм/л. и более.

Упражнения, направленные на повышение возможностей гликолиза должны выполняться при высоком кислородном долге.

Решению этой задачи способствует следующая методика: выполнение упражнений с субмаксимальной интенсивностью с неполными или сокращенными интервалами отдыха, при которых очередное упражнение выполняется на фоне недовосстановления оперативной работоспособности.

Выполнение упражнений в этой зоне интенсивности может быть только интервальным (или интервально-серийным). Продолжительность отдельных упражнений от 30 секунд до 2-3 минут. Паузы отдыха неполные или сокращённые (40-60 сек.).

Суммарный объём работы в одном занятии до 40-50 минут. Основное биоэнергетическое вещество – гликоген мышц.

Пятая зона интенсивности. Анаэробно-алактатная.

Для повышения анаэробно-алактатных возможностей (быстроты , скоростных способностей) применяются упражнения продолжительностью от 3 до 15 секунд с максимальной интенсивностью . Показатели ЧСС в этой зоне интенсивности не информативны, так как за 15 секунд сердечно-сосудистая и дыхательная системы не могут выйти на свою даже околомаксимальную оперативную работоспособность.

Скоростные способности в основном лимитируются мощностью и ёмкостью креатинфосфатного механизма . Концентрация молочной кислоты в крови невелика – 5-8 Мм/л. Основное биоэнергетическое вещество – креатинфосфат.

При выполнении упражнений в этой зоне интенсивности, несмотря на кратковременность выполняемых упражнений (до 15 сек.), интервалы отдыха должны быть достаточными для восстановления креатинфосфата в мышцах (полные интервалы отдыха). Продолжительность пауз отдыха, в зависимости от продолжительности упражнения, составляет от 1,5 до 2-3 минут.

Тренировочная работа должна выполняться серийно-интервально: 2-4 серии, в каждой серии по 4-5 повторений. Между сериями отдых должен быть более продолжительный – 5-8 минут, который заполняется малоинтенсивной работой. Потребность в более продолжительном отдыхе между сериями объясняется тем, что запасы креатинфосфата в мышцах невелики и к 5-6повторению они в значительной мере исчерпываются, а в процессе более продолжительного междусерийного отдыха они восстанавливаются.

Продолжительность тренировочной работы в одном занятии в этой зоне интенсивности – до 40-50 минут.


Пульсовой режим рациональной тренировочной нагрузки. Зоны мощности.

Кратко:

ПУЛЬС – явл-ся одним из важнейших показателей интенсивности нагрузки на орг-зм чел-ка.

Пульсовые характеристики различны у тренированных и нетренир-ых людей.

П.режим при вып-нии Ф.упр-ий должен быть таким, чтобы обеспечивалась физиол-ски оправданная нагрузка, направленная на развитие определенных двигательных кач-в.

РЕЖИМ ЧСС при Ф.нагрузке.

1. Стандартная непрерывная Нагр.- для начинающих ЧСС 120-180уд/м, а для спорт-ов 150-180уд/м. Продолжительность вып-ия упр-ий составляет от 10-15мин до неск-их часов.

2. Переменная непрерывная Нагр.- ЧСС от 130-140уд/м до 170-185уд/м. Изменение интенсивности Нагр. произв-ся произвольно в указанном диапазоне или планируется заранее. Продолж-сть выполнения от 10-12мин до 1часа.

3. Интервальная Нагр.- интенсивность работы д/б на уровне 75-85% от максимальной, при этом ЧСС к концу работы должна составлять 180уд/м. Продолж-сть выполнения не более 1,5мин. Число повторений зависит от поготовл-сти занимающихся. Перед очередным повторением ЧСС должна снизиться до 120-140уд/м. Интервалы отдыха не превышают 4мин.

Различают ЗОНЫ МОЩНОСТИ.

1. МАЛЫХ НАГРУЗОК.

Составляет 50-60% максимальной ЧСС, самая простая и наиболее удобная зона для начинающих, имеющих низкую Ф.подгот-сть. Способствует снижения риска развития ишемической болезни сердца. В этой зоне не бывает травм и осложнений от действия Ф.нагрузки.

2. ФИТНЕСС зона.

Сост-ет 60-70% максимальной ЧСС. Возникают дополнительные условия выведения жира из жировых депо за счет его повышенной утилизации в мышцах и сжигания лишних калорий.

3. АЭРОБНАЯ.

Сост-ет 70-80% от максимальной ЧСС. Предназначена для закрепления полученных ранее результатов. Увеличиваются функц-ные возможности

Орг-зма. В итоге улучшается ССсистема, система органов дыхания и повышается прочность сердца.

4. АНАЭРОБНАЯ.

Начинается при 80-90% максимальной ЧСС. Является максимумом потребления кислорода. В этом режиме тренир-ся спортсмены-проф-лы.

Происходит повышение функц-ной деят-сти ССсистемы к высоким дозам выделения молочной кислоты. (марафон).

5. зона «ПОСЛЕДНЕЙ ЧЕРТЫ».

Близка к 90-100% ЧСС. Достичь ее можно только на пике очень хорошей спорт-ной формы.

Чтобы обеспечить гармоничное развитие Ф.кач-в, необходимо выполнять Ф.нагрузки с широким диапазоном, путем регулярной направленной тренировки мощности систем кровообращения, дыхания и т.п.

Наиболее простым методом определения и контроля интенсивности тренировочных нагрузок у человека является измерение частоты сердечных сокращений (ЧСС). В основе определения интенсивности (мощности) тренировочной нагрузки по ЧСС лежит прямая связь между ними: чем больше величина аэробной нагрузки, тем выше ЧСС. Для определения интенсивности тренировочной нагрузки у людей разного пола, возраста и физической подготовленности (тренированности), используют не абсолютные, а относительные величины ЧСС. На практике чаще используется относительная рабочая ЧСС – выраженная в процентах. Отношение ЧСС во время нагрузки, (т.е. ЧСС рабочая):

Чем ниже уровень физической подготовленности, тем меньше должна быть интенсивность (абсолютная и относительная) тренировочной нагрузки. Так, в начале занятий интенсивность физической нагрузки не рекомендуется задавать более 60 – 70% от ЧСС максимальной. Для определения необходимой интенсивности нагрузки по ЧСС используется простая формула:

По мере повышения физической подготовленности человека интенсивность тренирующих нагрузок (в пульсовом исчислении) повышают до 70 и далее до 80% от ЧССmax. Лишь при этом условии достигается положительный эффект в улучшении физического здоровья человека.

В основе использования ЧСС лежит линейная зависимость между мощностью работы и ЧСС.

В физической культуре выделяют три критические величины ЧСС.

Первая величина ЧСС = 130 уд/мин. Это нижний порог достижения тренировочного эффекта. Более 25 лет назад были проведены исследования функциональных возможностей сердца, и выявлено, что при 130 уд/мин нагрузка имеет достижения тренировочного эффекта. Однако величина в 130 уд/мин с возрастом должна понижаться.

Вторая величина 140 – 160 уд/мин. Это оптимальный порог достижения тренировочного эффекта в физической культуре. С возрастом также понижается.

Третья величина – 170 уд/мин и выше. Это уровень ПАНО, и используется при занятиях физической культурой и спортом.

Нагрузка свыше 180 уд/мин – считается чрезмерной, и на занятиях физической культурой не используется.

Нагрузка до 100 уд/мин – не значительная, используется после травм, в восстановительный период.

Зоны мощности.

Как известно, энергетические запросы организма удовлетворяются двумя путями: анаэробным и аэробным. Соотношение этих путей неодинаково. И выделяют три группы анаэробных упражнений:

1. Упражнения максимальной анаэробной мощности. Это упражнения с почти анаэробным способом энергообеспечения работающих мышц. Анаэробный компонент составляет 90 – 100%. Он обеспечивается главным образом за счет фосфагенной энергетической системы (АТФ и КрФ) и некоторым участием лактацидной энергетической системы.

Возможная предельная продолжительность работы – несколько секунд (бег –100м; плавание – 50м).

ЧСС повышается еще до старта – 140 – 150уд/мин и продолжает расти во время выполнения упражнения. Усиление вегетативных систем происходит в процессе работы постепенно. Из-за кратковременности анаэробных упражнений во время их выполнения функции кровообращения и дыхания не успевают достигнуть возможного максимума.

2. Упражнения околомаксимальной анаэробной мощности. Это упражнения с преимущественно анаэробным энергообеспечением мышц. Анаэробный компонент составляет 75 – 85%. Наименьший процент энергопродукции составляет фосфагенная и в наибольший процент лактацидная энергетическая система.

Возможная предельная продолжительность работы от 20 – 50 секунд (бег – 200 – 400 м; плавание – 100 м; бег на коньках – 500 м).

ЧСС - повышается очень значительно, еще до старта – 150 – 160 уд/мин, максимума она достигает сразу после финиша.

3. Упражнения субмаксимальной анаэробной мощности (анаэробно – аэробной мощности). Это упражнения с преобладанием анаэробного компонента энергообеспечения работающих мышц. В общей энергопродукции организма он достигает 60 – 70% и обеспечивается преимущественно за счет лактацидной энергетической системы. В энергообеспечении этих упражнений значительная доля принадлежит кислородной (окислительной) аэробной энергетической системе. Возможная предельная продолжительность работы составляет от 1 до 2 минут. Бег – 800 м; плавание – 200 м; бег на коньках – 1000 – 1500 м.

Мощность и предельная продолжительность этих упражнений таковы, что в процессе их выполнения показатели деятельности кислородтранспортной системы (ЧСС, ПО2, ЛВ) близки к максимальным значениям для данного спортсмена. Чем продолжительнее упражнение, тем выше на финише эти показатели.

Выделяют пять групп аэробных упражнений:

1. Упражнения максимальной аэробной мощности – с дистанционным потреблением кислорода (ПО2) 95 – 100% от индивидуального МПК – это упражнения с преобладанием аэробного компонента энергопродуции, однако велик вклад и гликолитической энергетической системы. Основным энергетическим субстратом является гликоген, который расщепляется как анаэробным, так и аэробным путем. Предельная продолжительность - 3 – 10 минут. Бег – 1500, 3000 м; плавание – 400 – 800 м; бег на коньках 3000 – 5000м. Через 1,5 – 2 минуты достигается максимальная ЧСС для данного человека. После окончания упражнения концентрация лактата достигает 15 – 25 ммоль/л крови.

2. Упражнения околомаксимальной аэробной мощности – с дистанционным ПО2 85 – 95% от индивидуального МПК. Это упражнения с преобладанием при выполнении окислительными (аэробными) реакциями в работающих мышцах. В качестве субстратов выступают углеводы. Главную роль играет гликоген печени, и в меньшей глюкоза крови. Продолжительность упражнения до 30 минут. Бег – 5 – 10 км; плавание – 1500 м; бег на лыжах – 15км; бег на коньках – 10 км. В процессе выполнения упражнения концентрация лактата в крови достигает – 10 ммоль/л крови

3. Упражнения субмаксимальной аэробной мощности – с дистанционным ПО2 до 70 – 80% от максимального МПК. Энергообеспечение осуществляется аэробным путем за счет окисления углеводов, и в меньшей степени жиров. Основным энергетическим субстратом служит гликоген печени и мышц и глюкоза крови. Продолжительность выполнения упражнения составляет 120 минут. Бег – 30 км; лыжные гонки – 20 – 50 км. На протяжении упражнения ЧСС находится на уровне 80 – 90% от максимальных значений. Концентрация лактата в крови не превышает 4 ммоль/литр крови.

4. Упражнения средней аэробной мощности - с дистанционным ПО2 – 55 – 65% от МПК. Это упражнения, при выполнении которых почти вся энергия обеспечивается аэробными процессами. Основным энергетическим субстратом служат жиры работающих мышц и крови. Предельная продолжительность работы составляет до нескольких часов – спортивная ходьба – 50 км; лыжные гонки – марафон.

5. Упражнения малой аэробной мощности – с дистанционным ПО2 – 50% и менее – это упражнения при выполнении которых вся энергии обеспечивается за счет окислительных процессов, в которых расходуются главным образом жиры и в меньшей степени углеводы. Упражнения могут выполняться несколько часов – повседневная бытовая деятельность.

Зоны мощности выделены на основании педагогических наблюдений, а уже затем наполнены биологическими данными.

В соревнованиях человек проявляет свои физические качества в различных движениях, и движения эти весьма специфичны и разнообразны. Специфика этих движений и методика их отработки вызывают существенные различия в тренировках представителей разных видов спорта. Однако общим для тренировок является энергообеспечение движений, сопоставляющее двигательную деятельность с процессом потребления кислорода – важнейшей жизненной функцией.

Таблица 2

Характеристики работы различной мощности

№ п/п Показатели Зоны мощности
Максимальная Субмаксимальная Большая Умеренная
1. Продолжительность работы До 20-30 с От 20-30 с до 3-5-мин От 3-5 мин до 30-40 мин Более 40 мин
2. Отношение О 2 -долга к О 2 -запросу, % 90-95 60-90 50-20 3-5
3. ЧСС, уд/мин Не успевает достичь максимума, 160-170 Нарастает до максимума, 190 и выше Близка к максимуму, до 200 Ниже максимума, 150-180
4. Длительность восстановления 30-40 мин 1-2 часа Несколько часов 2-3 суток
5. Основные источники энергии АТФ, креатинфосфат АТФ, креатинфосфат, гликоген Гликоген Жиры
6. Концентрация лактата, ммоль/л/мин 4-5 До 20 и более 6-8 До 4-х
7. Потребление кислорода, % МПК Не успевает достичь максимума, 30-50% К исходу 2-3 мин достигает 100% До 100% со снижением после 15 мин 40-60%

Это основополагающее соотношение, зачастую, недооценивается в практике отдельных видов спорта. Специалисты, увлекаясь отработкой формы движений, стремясь приблизить движения к соревновательным, упускают из виду, во что это обходится организму. Забывают, что любая жизнедеятельность, так или иначе, адекватна потреблению кислорода, и его недостаток, даже временный, вызовет в организме напряжение с далеко идущими последствиями. Эти последствия могут проявиться, как в искажении формирования тренировочных эффектов, так и в перетренировках, травмах, «необъяснимых» провалах спортивной формы и так далее.

В спорте зоны мощности применяются для оценки напряжённости работы (табл. 2).

Несколько отличаются от зон мощности зоны интенсивности тренировочных нагрузок, выделенные по биологическим параметрам.

Таблица 3

Зоны интенсивности тренировочных нагрузок

1 зона Аэробно восстановительная 2 зона Аэробно-развивающая 3 зона Смешанная, аэробно-анаэробная 4 зона Анаэробная гликолитическая 5 зона Анаэробная алактатная
Преимущественные субстраты энерго-обеспечения Жиры, гликоген Гликоген, жиры Гликоген, жиры Гликоген Креатинфосфат
Соотношение аэробного и анаэробного энергообеспечения, % 100% аэробное 95/5 80/20 20/80 5/95
Потребление кислорода в % МПК 40-70 60-90 80-100 80-90 Незначительное
Пограничная скорость или мощность работы Аэробный порог Анаэробный порог Критическая Субмаксимальная Максимальная
Рабочий пульс, уд/мин 120-140 140-160 170-180 180 и выше Не информативен
Концентрация лактата, ммоль/л 2-2,5 2-4,5 6-8 10 и более Не информативна
Преимущественно работающие мышечные волокна ММВ ММВ, ПМВ ММВ, ПМВ ММВ, ПМВ, БМВ ММВ, ПМВ, БМВ
Эффективное время работы Несколько часов До 3-4 часов До 30 мин До 2 мин До 10 с

Опора на энергообеспечение позволила подвести теоретическую базу под интенсивность и длительность тренировочных нагрузок, чётко определить границы между зонами интенсивности и пороговые значения (АП, ПАНО, критический), взаимовлияние аэробного и анаэробного процессов энергообеспечения (табл. 3).

Привязка зон интенсивности к биологическим критериям отображена на рисунке 1. График (рис. 1) отражает последовательность в нарастании интенсивности работы в 1-4-й зонах. На практике движение может начинаться сразу в той или иной зоне интенсивности. Например, в 5-й зоне работа проводится с резким включением и выключением.

Таблица зон интенсивности применяется при планировании и контроле тренировочных нагрузок для оценки напряжённости тренировочного процесса и распределения нагрузок по мезоциклам. Это позволяет чётко соблюдать принципы спортивной тренировки.

Существуют методические рекомендации по оптимальному процентному соотношению времени тренировочных нагрузок по зонам интенсивности в конькобежном спорте [Кубаткин В.П., 2003]. Для разной квалификации спортсменов они различны и в разные периоды подготовки варьируют около следующих примерных значений:

I зона – 10%;

II зона – 46%;

III зона – 31%;

IV зона – 1%

V зона – 12%

Методические выводы:

1. С увеличением мощности нагрузки снижается её длительность.

2. С увеличением мощности нагрузки повышается доля анаэробного энергообеспечения движений.

Функция тренировочной нагрузки помогает вам узнать усилие, которое вы затрачиваете на тренировку. Тренировочная нагрузка рассчитывается для каждой тренировки на основании ее интенсивности и длительности. Функция тренировочной нагрузки сравнивает кратковременную тренировку с высокой интенсивностью и долговременную тренировку с низкой интенсивностью. Для более детального сравнения тренировок, значение тренировочной нагрузки указано для пользователя в днях и часах.

Тренировочная нагрузка основывается на интенсивности и длительности тренировки. Интенсивность тренировки определяется на основании частоты сердечных сокращений. При этом также учитываются ваши личные данные, такие как возраст, пол, вес, VO2max и история тренировок. Пока у вас не появится истории тренировок, для расчетом используется ваш опыт тренировок. При расчете интенсивности также используются значения вашего аэробного и анаэробного порога. После того как вы их точно измерили, обновите значения по умолчанию в онлайн-сервисе. Также с помощью определенного коэффициента спорта учитывается и вид спорта, что улучшает точность расчета.

Низкая 0-6 часов

Умеренная 7-12 часов

Изнурительная 13-24 часов

Очень изнурительная 25-48 часов

Экстремальная Более 48 часов

Количественный показатель тренировочной нагрузки

Тренировочная нагрузка может характеризоваться временем восстановления или количественным показателем. Время восстановления - это время, спустя которое вы, предположительно, восстановитесь после тренировки. Количественный показатель тренировочной нагрузки - это цифровое значение, обозначающее примерное количество углеводов и белков, которые были потрачены на выработку энергии во время тренировки. Это цифровое значение обычно варьируется от 50 до 250 за 30-90-минутную тренировку.

Режим отображения количественного показателя тренировочной нагрузки можно задать в олнайн-сервисе Team Pro в меню Настройки команды > Общее .



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!