Упражнения. Питание. Диеты. Тренировки. Спорт

Из двух дробей с одинаковым числителем больше. Сравнение дробей. Сравнение чисел с корнем

Две неравные дроби подлежат дальнейшему сравнению для выяснения, какая дробь больше, а какая дробь меньше. Для сравнения двух дробей существует правило сравнения дробей, которое мы сформулируем ниже, а также разберем примеры применения этого правила при сравнении дробей с одинаковыми и разными знаменателями. В заключение покажем, как сравнить дроби с одинаковыми числителями, не приводя их к общему знаменателю, а также рассмотрим, как сравнить обыкновенную дробь с натуральным числом.

Навигация по странице.

Сравнение дробей с одинаковыми знаменателями

Сравнение дробей с одинаковыми знаменателями по сути является сравнением количества одинаковых долей. К примеру, обыкновенная дробь 3/7 определяет 3 доли 1/7 , а дробь 8/7 соответствует 8 долям 1/7 , поэтому сравнение дробей с одинаковыми знаменателями 3/7 и 8/7 сводится к сравнению чисел 3 и 8 , то есть, к сравнению числителей.

Из этих соображений вытекает правило сравнения дробей с одинаковыми знаменателями : из двух дробей с одинаковыми знаменателями больше та дробь, числитель которой больше, и меньше та дробь, числитель которой меньше.

Озвученное правило объясняет, как сравнить дроби с одинаковыми знаменателями. Рассмотрим пример применения правила сравнения дробей с одинаковыми знаменателями.

Пример.

Какая дробь больше: 65/126 или 87/126 ?

Решение.

Знаменатели сравниваемых обыкновенных дробей равны, а числитель 87 дроби 87/126 больше числителя 65 дроби 65/126 (при необходимости смотрите сравнение натуральных чисел). Поэтому, согласно правилу сравнения дробей с одинаковыми знаменателями, дробь 87/126 больше дроби 65/126 .

Ответ:

Сравнение дробей с разными знаменателями

Сравнение дробей с разными знаменателями можно свести к сравнению дробей с одинаковыми знаменателями. Для этого лишь нужно сравниваемые обыкновенные дроби привести к общему знаменателю .

Итак, чтобы сравнить две дроби с разными знаменателями, нужно

  • привести дроби к общему знаменателю;
  • сравнить полученные дроби с одинаковыми знаменателями.

Разберем решение примера.

Пример.

Сравните дробь 5/12 с дробью 9/16 .

Решение.

Сначала приведем данные дроби с разными знаменателями к общему знаменателю (смотрите правило и примеры приведения дробей к общему знаменателю). В качестве общего знаменателя возьмем наименьший общий знаменатель, равный НОК(12, 16)=48 . Тогда дополнительным множителем дроби 5/12 будет число 48:12=4 , а дополнительным множителем дроби 9/16 будет число 48:16=3 . Получаем и .

Сравнив полученные дроби, имеем . Следовательно, дробь 5/12 меньше, чем дробь 9/16 . На этом сравнение дробей с разными знаменателями завершено.

Ответ:

Получим еще один способ сравнения дробей с разными знаменателями, который позволит выполнять сравнение дробей без их приведения к общему знаменателю и всех сложностей, связанных с этим процессом.

Для сравнения дробей a/b и c/d , их можно привести к общему знаменателю b·d , равному произведению знаменателей сравниваемых дробей. В этом случае дополнительными множителями дробей a/b и c/d являются числа d и b соответственно, а исходные дроби приводятся к дробям и с общим знаменателем b·d . Вспомнив правило сравнения дробей с одинаковыми знаменателями, заключаем, что сравнение исходных дробей a/b и c/d свелось к сравнению произведений a·d и c·b .

Отсюда вытекает следующее правило сравнения дробей с разными знаменателями : если a·d>b·c , то , а если a·d

Рассмотрим сравнение дробей с разными знаменателями этим способом.

Пример.

Сравните обыкновенные дроби 5/18 и 23/86 .

Решение.

В этом примере a=5 , b=18 , c=23 и d=86 . Вычислим произведения a·d и b·c . Имеем a·d=5·86=430 и b·c=18·23=414 . Так как 430>414 , то дробь 5/18 больше, чем дробь 23/86 .

Ответ:

Сравнение дробей с одинаковыми числителями

Дроби с одинаковыми числителями и разными знаменателями, несомненно, можно сравнивать с помощью правил, разобранных в предыдущем пункте. Однако, результат сравнения таких дробей легко получить, сравнив знаменатели этих дробей.

Существует такое правило сравнения дробей с одинаковыми числителями : из двух дробей с одинаковыми числителями больше та, у которой меньше знаменатель, и меньше та дробь, знаменатель которой больше.

Рассмотрим решение примера.

Пример.

Сравните дроби 54/19 и 54/31 .

Решение.

Так как числители сравниваемых дробей равны, а знаменатель 19 дроби 54/19 меньше знаменателя 31 дроби 54/31 , то 54/19 больше 54/31 .

В этом уроке мы научимся сравнивать дроби между собой. Это очень полезный навык, который необходим для решения целого класса более сложных задач.

Для начала напомню определение равенства дробей:

Дроби a /b и c /d называются равными, если ad = bc .

  1. 5/8 = 15/24, поскольку 5 · 24 = 8 · 15 = 120;
  2. 3/2 = 27/18, поскольку 3 · 18 = 2 · 27 = 54.

Во всех остальных случаях дроби являются неравными, и для них справедливо одно из следующих утверждений:

  1. Дробь a /b больше, чем дробь c /d ;
  2. Дробь a /b меньше, чем дробь c /d .

Дробь a /b называется большей, чем дробь c /d , если a /b − c /d > 0.

Дробь x /y называется меньшей, чем дробь s /t , если x /y − s /t < 0.

Обозначение:

Таким образом, сравнение дробей сводится к их вычитанию. Вопрос: как не запутаться с обозначениями «больше» (>) и «меньше» (<)? Для ответа просто приглядитесь к тому, как выглядят эти знаки:

  1. Расширяющаяся часть галки всегда направлена к большему числу;
  2. Острый нос галки всегда указывает на меньшее число.

Часто в задачах, где требуется сравнить числа, между ними ставят знак «∨». Это - галка носом вниз, что как бы намекает: большее из чисел пока не определено.

Задача. Сравнить числа:

Следуя определению, вычтем дроби друг из друга:


В каждом сравнении нам потребовалось приводить дроби к общему знаменателю. В частности, используя метод «крест-накрест» и поиск наименьшего общего кратного. Я намеренно не акцентировал внимание на этих моментах, но если что-то непонятно, загляните в урок «Сложение и вычитание дробей » - он совсем легкий.

Сравнение десятичных дробей

В случае с десятичными дробями все намного проще. Здесь не надо ничего вычитать - достаточно просто сравнить разряды. Не лишним будет вспомнить, что такое значащая часть числа. Тем, кто забыл, предлагаю повторить урок «Умножение и деление десятичных дробей » - это также займет буквально пару минут.

Положительная десятичная дробь X больше положительной десятичной дроби Y , если в ней найдется такой десятичный разряд, что:

  1. Цифра, стоящая в этом разряде в дроби X , больше соответствующей цифры в дроби Y ;
  2. Все разряды старше данного у дробей X и Y совпадают.
  1. 12,25 > 12,16. Первые два разряда совпадают (12 = 12), а третий - больше (2 > 1);
  2. 0,00697 < 0,01. Первые два разряда опять совпадают (00 = 00), а третий - меньше (0 < 1).

Другими словами, мы последовательно просматриваем десятичные разряды и ищем различие. При этом большей цифре соответствует и большая дробь.

Однако это определение требует пояснения. Например, как записывать и сравнивать разряды до десятичной точки? Вспомните: к любому числу, записанному в десятичной форме, можно приписывать слева любое количество нулей. Вот еще пара примеров:

  1. 0,12 < 951, т.к. 0,12 = 000,12 - приписали два нуля слева. Очевидно, 0 < 9 (речь идет о старшем разряде).
  2. 2300,5 > 0,0025, т.к. 0,0025 = 0000,0025 - приписали три нуля слева. Теперь видно, что различие начинается в первом же разряде: 2 > 0.

Конечно, в приведенных примерах с нулями был явный перебор, но смысл именно такой: заполнить недостающие разряды слева, а затем сравнить.

Задача. Сравните дроби:

  1. 0,029 ∨ 0,007;
  2. 14,045 ∨ 15,5;
  3. 0,00003 ∨ 0,0000099;
  4. 1700,1 ∨ 0,99501.

По определению имеем:

  1. 0,029 > 0,007. Первые два разряда совпадают (00 = 00), дальше начинается различие (2 > 0);
  2. 14,045 < 15,5. Различие - во втором разряде: 4 < 5;
  3. 0,00003 > 0,0000099. Здесь надо внимательно считать нули. Первые 5 разрядов в обеих дробях нулевые, но дальше в первой дроби стоит 3, а во второй - 0. Очевидно, 3 > 0;
  4. 1700,1 > 0,99501. Перепишем вторую дробь в виде 0000,99501, добавив 3 нуля слева. Теперь все очевидно: 1 > 0 - различие обнаружено в первом же разряде.

К сожалению, приведенная схема сравнения десятичных дробей не универсальна. Этим методом можно сравнивать только положительные числа . В общем же случае алгоритм работы следующий:

  1. Положительная дробь всегда больше отрицательной;
  2. Две положительные дроби сравниваются по приведенному выше алгоритму;
  3. Две отрицательные дроби сравниваются так же, но в конце знак неравенства меняется на противоположный.

Ну как, неслабо? Сейчас рассмотрим конкретные примеры - и все станет понятно.

Задача. Сравните дроби:

  1. 0,0027 ∨ 0,0072;
  2. −0,192 ∨ −0,39;
  3. 0,15 ∨ −11,3;
  4. 19,032 ∨ 0,0919295;
  5. −750 ∨ −1,45.
  1. 0,0027 < 0,0072. Здесь все стандартно: две положительные дроби, различие начинается на 4 разряде (2 < 7);
  2. −0,192 > −0,39. Дроби отрицательные, 2 разряд разный. 1 < 3, но в силу отрицательности знак неравенства меняется на противоположный;
  3. 0,15 > −11,3. Положительное число всегда больше отрицательного;
  4. 19,032 > 0,091. Достаточно вторую дробь переписать в виде 00,091, чтобы увидеть, что различие возникает уже в 1 разряде;
  5. −750 < −1,45. Если сравнить числа 750 и 1,45 (без минусов), легко видеть, что 750 > 001,45. Различие - в первом же разряде.

Правила сравнения обыкновенных дробей зависят от вида дроби (правильная, неправильная, смешанная дробь) и от знаменателен (одинаковые или разные) у сравниваемых дробей.

В этом разделе рассматриваются варианты сравнения дробей, имеющих одинаковые числители или знаменатели.

Правило. Чтобы сравнить две дроби с одинаковыми знаменателями, надо сравнить их числители. Больше (меньше) та дробь, у которой числитель больше (меньше).

Например, сравнить дроби:

Правило. Чтобы сравнить правильные дроби с одинаковыми числителями, надо сравнить их знаменатели. Больше (меньше) та дробь, у которой знаменатель меньше (больше).

Например, сравнить дроби:

Сравнение правильных, неправильных и смешанных дробей между собой

Правило. Неправильная и смешанная дроби всегда больше любой правильной дроби.

Правильная дробь но определению меньше 1, поэтому неправильная и смешанная дроби (имеющие в своем составе число, равное или больше 1) больше правильной дроби.

Правило. Из двух смешанных дробей больше (меньше) та, у которой целая часть дроби больше (меньше). При равенстве целых частей смешанных дробей больше (меньше) та дробь, у которой больше (меньше) дробная часть.

Сравнить две дроби - значит определить, какая из дробей больше, какая меньше или установить, что дроби равны.

Сравнение дробей с одинаковыми знаменателями

Из двух дробей с одинаковыми знаменателями больше та дробь, у которой числитель больше.

Пример. Дробь больше чем дробь , потому что доли в обеих дробях одинаковы, но в первой дроби их больше, чем во второй.

Если изобразим единицу отрезком и разделим его на 8 долей, то легко увидеть, что дробь больше :

Сравнение дробей с одинаковыми числителями

Из двух дробей с одинаковыми числителями больше та дробь, у которой знаменатель меньше.

Пример. Дробь больше чем дробь , потому что число долей в обеих дробях одинаково, но в первой дроби доли крупнее, чем во второй.

Изобразим две единицы в виде кругов, один разделим на 4 доли, второй на 6 долей. Теперь можно увидеть, что дробь больше :

Сравнение дробей с разными знаменателями и числителями

Чтобы сравнить дроби, у которых разные числители и знаменатели, нужно привести их к общему знаменателю. После этого их сравнивают по правилу сравнения дробей, у которых одинаковые знаменатели.

Пример. Сравните дроби: и .

Решение:

Теперь сравниваем их по правилу сравнения дробей, у которых одинаковые знаменатели. Так как , значит .

Приведём ещё один способ сравнения дробей с разными знаменателями и числителями. Рассмотрим сначала числовой пример.

Пример. Сравним дроби и .

Решение:

Приводим данные дроби к общему знаменателю:

Решая данный пример можно заметить, что, после приведения дробей к общему знаменателю, задача сравнения свелась фактически к сравнению произведений 2 · 7 и 4 · 3. Так как 2 · 7 = 14, а 4 · 3 = 12, то 2 · 7 > 4 · 3. Значит, .

Теперь решим эту же задачу в общем виде, используя буквенную запись.

Пример. Пусть даны дроби и , где a и c - нуль или натуральные числа, b и d - натуральные числа. Приведём дроби к общему знаменателю:

Следовательно:

Таким образом мы получили следующее правило сравнения обыкновенных дробей:

Чтобы сравнить две обыкновенные дроби, можно числитель одной дроби умножить на знаменатель другой и полученные произведения сравнить.

Это правило называется перекрёстным правилом сравнения дробей .

Сравнение дроби с натуральным числом

Любая правильная дробь меньше любого натурального числа.

Пример.

Сравнение неправильной дроби с натуральным числом сводится к сравнению двух дробей.

Чтобы сравнить неправильную дробь с натуральным числом, нужно натуральное число представить в виде неправильной дроби со знаменателем 1, затем их можно сравнить одним из двух способов: используя перекрёстное правило, либо привести дроби к общему знаменателю. После этого их сравнивают по правилу сравнения дробей, у которых одинаковые знаменатели.

При решении уравнений и неравенств, а также задач с модулями требуется расположить найденные корни на числовой прямой.

Как ты знаешь, найденные корни могут быть разными. Они могут быть такими: , а могут быть и вот такими: , .

Соответственно, если числа не рациональные а иррациональные (если забыл что это, ищи в теме ), или представляют собой сложные математические выражения, то расположить их на числовой прямой весьма проблематично.

Тем более, что калькуляторами на экзамене пользоваться нельзя, а приближенный подсчет не дает 100% гарантий, что одно число меньше другого (вдруг разница между сравниваемыми числами?).

Конечно, ты знаешь, что положительные цифры всегда больше отрицательных, и что если мы представим числовую ось, то при сравнении, наибольшие числа будут находиться правее, чем наименьшие: ; ; и т.д.

Но всегда ли все так легко?

Где на числовой оси мы отметим, .

Как их сравнить, например, с числом? Вот в этом-то и загвоздка …)

В этой статье мы найдем рассмотрим все способы сравнения чисел, чтобы на экзамене для тебя это не было проблемой!

Для начала поговорим в общих чертах как и что сравнивать.

Важно: преобразования желательно делать такими, чтобы знак неравенства не менялся! То есть в ходе преобразований нежелательно домножать на отрицательное число, и нельзя возводить в квадрат, если одна из частей отрицательна.

Сравнение дробей

Итак, нам необходимо сравнить две дроби: и.

Есть несколько вариантов, как это сделать.

Вариант 1. Привести дроби к общему знаменателю.

Запишем в виде обыкновенной дроби:

- (как ты видишь, я также сократила на числитель и знаменатель).

Теперь нам необходимо сравнить дроби:

Сейчас мы можем продолжить сравнивать также двумя способами. Мы можем:

  1. просто привести все к общему знаменателю, представив обе дроби как неправильные (числитель больше знаменателя):

    Какое число больше? Правильно, то, у которого числитель больше, то есть первое.

  2. «отбросим» (считай, что мы из каждой дроби вычли единицу, и соотношение дробей друг с другом, соответственно, не изменилось) и будем сравнивать дроби:

    Приводим их также к общему знаменателю:

    Мы получили абсолютно точно такой же результат, как и в предыдущем случае - первое число больше, чем второе:

    Проверим также, правомерно ли мы вычли единицу? Посчитаем разницу в числителе при первом расчете и втором:
    1)
    2)

Итак, мы рассмотрели, как сравнивать дроби, приводя их к общему знаменателю. Перейдем к другому методу - сравнение дробей приводя их к общему… числителю.

Вариант 2. Сравнение дробей с помощью приведения к общему числителю.

Да, да. Это не опечатка. В школе редко кому рассказывают этот метод, но очень часто он весьма удобен. Чтобы ты быстро понял его суть, задам тебе только один вопрос - «в каких случаях значение дроби наибольшее?» Конечно, ты скажешь «когда числитель максимально большой, а знаменатель максимально маленький».

Например, ты же точно скажешь, что Верно? А если нам надо сравнить такие дроби: ? Думаю, ты тоже сразу верно поставишь знак, ведь в первом случае делят на частей, а во втором на целых, значит, во втором случае кусочки получаются совсем маленькие, и соответственно: . Как ты видишь, знаменатели здесь разные, а вот числители одинаковы. Однако, для того, чтобы сравнить эти две дроби, тебе не обязательно искать общий знаменатель. Хотя… найди его и посмотри, вдруг знак сравнения все же неправильный?

А знак-то тот же.

Вернемся к нашему изначальному заданию - сравнить и. Будем сравнивать и. Приведем данные дроби не к общему знаменателю, а к общему числителю. Для этого просто числитель и знаменатель первой дроби умножим на. Получим:

и. Какая дробь больше? Правильно, первая.

Вариант 3. Сравнение дробей с помощью вычитания.

Как сравнивать дроби с помощью вычитания? Да очень просто. Мы из одной дроби вычитаем другую. Если результат получается положительным, то первая дробь (уменьшаемое) больше второй (вычитаемое), а если отрицательным, то наоборот.

В нашем случае попробуем из второй вычесть первую дробь: .

Как ты уже понял, мы так же переводим в обыкновенную дробь и получаем тот же результат - . Наше выражение приобретает вид:

Далее нам все равно придется прибегнуть к приведению к общему знаменателю. Вопрос как: первым способом, преобразуя дроби в неправильные, или вторым, как бы «убирая» единицу? Кстати, это действие имеет вполне математическое обоснование. Смотри:

Мне больше нравится второй вариант, так как перемножение в числителе при приведении к общему знаменателю становится в разы проще.

Приводим к общему знаменателю:

Здесь главное не запутаться, какое число и откуда мы отнимали. Внимательно посмотреть ход решения и случайно не перепутать знаки. Мы отнимали от второго числа первое и получили отрицательный ответ, значит?.. Правильно, первое число больше второго.

Разобрался? Попробуй сравнить дроби:

Стоп, стоп. Не спеши приводить к общему знаменателю или вычитать. Посмотри: можно легко перевести в десятичную дробь. Сколько это будет? Правильно. Что в итоге больше?

Это еще один вариант - сравнение дробей путем приведения к десятичной дроби.

Вариант 4. Сравнение дробей с помощью деления.

Да, да. И так тоже можно. Логика проста: когда мы делим большее число на меньшее, в ответе у нас получается число, больше единицы, а если мы делим меньшее число на большее, то ответ приходится на промежуток от до.

Чтобы запомнить это правило, возьми для сравнения любые два простых числа, например, и. Ты же знаешь, что больше? Теперь разделим на. Наш ответ - . Соответственно, теория верна. Если мы разделим на, что мы получим - меньше единицы, что в свою очередь подтверждает, что на самом деле меньше.

Попробуем применить это правило на обыкновенных дробях. Сравним:

Разделим первую дробь на вторую:

Сократим на и на.

Полученный результат меньше, значит делимое меньше делителя, то есть:

Мы разобрали все возможные варианты сравнения дробей. Как ты видишь их 5:

  • приведение к общему знаменателю;
  • приведение к общему числителю;
  • приведение к виду десятичной дроби;
  • вычитание;
  • деление.

Готов тренироваться? Сравни дроби оптимальным способом:

Сравним ответы:

  1. (- перевести в десятичную дробь)
  2. (поделить одну дробь на другую и сократить на числитель и знаменатель)
  3. (выделить целую часть и сравнивать дроби по принципу одинакового числителя)
  4. (поделить одну дробь на другую и сократить на числитель и знаменатель).

2. Сравнение степеней

Теперь представим, что нам необходимо сравнить не просто числа, а выражения, где существует степень ().

Конечно, ты без труда поставишь знак:

Ведь если мы заменим степень умножением, мы получим:

Из этого маленького и примитивного примера вытекает правило:

Попробуй теперь сравнить следующее: . Ты так же без труда поставишь знак:

Потому что, если мы заменим возведение степень на умножение…

В общем, ты все понял, и это совсем несложно.

Сложности возникают только тогда, когда при сравнении у степеней разные и основания, и показатели. В этом случае необходимо попробовать привести к общему основанию. Например:

Разумеется, ты знаешь, что это, соответственно, выражение приобретает вид:

Раскроем скобки и сравним то, что получится:

Несколько особый случай, когда основание степени () меньше единицы.

Если, то из двух степеней и больше та, показатель которой меньше.

Попробуем доказать это правило. Пусть.

Введем некоторое натуральное число, как разницу между и.

Логично, неправда ли?

А теперь еще раз обратим внимание на условие - .

Соответственно: . Следовательно, .

Например:

Как ты понял, мы рассмотрели случай, когда основания степеней равны. Теперь посмотрим, когда основание находится в промежутке от до, но равны показатели степени. Здесь все очень просто.

Запомним, как это сравнивать на примере:

Конечно, ты быстро посчитал:

Поэтому, когда тебе будут попадаться похожие задачи для сравнения, держи в голове какой-нибудь простой аналогичный пример, который ты можешь быстро просчитать, и на основе этого примера проставляй знаки в более сложном.

Выполняя преобразования, помни, что если ты домножаешь, складываешь, вычитаешь или делишь, то все действия необходимо делать и с левой и с правой частью (если ты умножаешь на, то умножать необходимо и то, и другое).

Кроме этого, бывают случаи, когда делать какие-либо манипуляции просто невыгодно. Например, тебе нужно сравнить. В данном случае, не так сложно возвести в степень, и расставить знак исходя из этого:

Давай потренируемся. Сравни степени:

Готов сравнивать ответы? Вот что у меня получилось:

  1. - то же самое, что
  2. - то же самое, что
  3. - то же самое, что
  4. - то же самое, что

3. Сравнение чисел с корнем

Для начала вспомним, что такое корни? Вот эту запись помнишь?

Корнем степени из действительного числа называется такое число, для которого выполняется равенство.

Корни нечетной степени существуют для отрицательных и положительных чисел, а корни четной степени - только для положительных.

Значением корня часто является бесконечная десятичная дробь, что затрудняет его точное вычисление, поэтому важно уметь сравнивать корни.

Если ты подзабыл, что это такое и с чем его едят - . Если все помнишь - давай учиться поэтапно сравнивать корни.

Допустим, нам необходимо сравнить:

Чтобы сравнить эти два корня, не нужно делать никаких вычислений, просто проанализируй само понятие «корень». Понял, о чем я говорю? Да вот об этом: иначе можно записать как третья степень какого-то числа, равна подкоренному выражению.

А что больше? или? Это ты, конечно, сравнишь без всякого труда. Чем большее число мы возводим в степень, тем больше будет значение.

Итак. Выведем правило.

Если показатели степени корней одинаковы (в нашем случае это), то необходимо сравнивать подкоренные выражения (и) - чем больше подкоренное число, тем больше значение корня при равных показателях.

Сложно запомнить? Тогда просто держи в голове пример и. Что больше?

Показатели степени корней одинаковы, так как корень квадратный. Подкоренное выражение одного числа () больше другого (), значит, правило действительно верное.

А что, если подкоренные выражения одинаковые, а вот степени корней разные? Например: .

Тоже вполне понятно, что при извлечении корня большей степени получится меньшее число. Возьмем для примера:

Обозначим значение первого корня как, а второго - как, то:

Ты без труда видишь, что в данных уравнениях должно быть больше, следовательно:

Если подкоренные выражения одинаковы (в нашем случае), а показатели степени корней различны (в нашем случае это и), то необходимо сравнивать показатели степени (и) - чем больше показатель, тем меньше данное выражение .

Попробуй сравнить следующие корни:

Сравним полученные результаты?

С этим благополучно разобрались:). Возникает другой вопрос: а что если у нас все разное? И степень, и подкоренное выражение? Не все так сложно нам нужно всего- навсего… «избавиться» от корня. Да, да. Именно избавиться)

Если у нас различные и степени и подкоренные выражения, необходимо найти наименьшее общее кратное (читай раздел про ) для показателей корней и возвести оба выражения в степень, равную наименьшему общему кратному.

Что мы все на словах и на словах. Приведем пример:

  1. Смотрим показатели корней - и. Наименьшее общее кратное у них - .
  2. Возведем оба выражения в степень:
  3. Преобразуем выражение и раскроем скобки (подробнее в главе ):
  4. Посчитаем, что у нас получилось, и поставим знак:

4. Сравнение логарифмов

Вот так, медленно, но верно, мы подошли к вопросу как же сравнивать логарифмы. Если ты не помнишь что это за зверь такой, советую для начала прочитать теорию из раздела . Прочитал? Тогда ответь на несколько важных вопросов:

  1. Что называется аргументом логарифма, а что его основанием?
  2. От чего зависит, возрастает ли функция или убывает?

Если все помнишь и отлично усвоил - приступаем!

Для того, чтобы сравнивать логарифмы между собой, необходимо знать всего 3 приема:

  • приведение к одинаковому основанию;
  • приведение к одинаковому аргументу;
  • сравнение с третьим числом.

Изначально, обрати внимание на основание логарифма. Ты помнишь, что если оно меньше, то функция убывает, а если больше, то возрастает. Именно на этом будет основаны наши суждения.

Рассмотрим сравнение логарифмов, которые уже приведены к одинаковому основанию, либо аргументу.

Для начала упростим задачу: пусть в сравниваемых логарифмах равные основания . Тогда:

  1. Функция, при возрастает на промежутке от, значит по определению, то («прямое сравнение»).
  2. Пример: - основания одинаковы,соответственно сравниваем аргументы: , следовательно:
  3. Функция, при, убывает на промежутке от, значит по определению, то («обратное сравнение»). - основания одинаковы, соответственно сравниваем аргументы: , однако, знак у логарифмов будет «обратный», так как функция убывает: .

Теперь рассмотрим случаи, когда основания различны, но одинаковы аргументы.

  1. Основание больше.
    • . В этом случае используем «обратное сравнение». Например: - аргументы одинаковы, и. Сравниваем основания: однако, знак у логарифмов будет «обратный»:
  2. Основание а находится в промежутке.
    • . В этом случае используем «прямое сравнение». Например:
    • . В этом случае используем «обратное сравнение». Например:

Запишем все в общем табличном виде:

, при этом , при этом

Соответственно, как ты уже понял, при сравнении логарифмов нам необходимо привести к одинаковому основанию, либо аргументу, К одинаковому основанию мы приходим, используя формулу перехода от одного основания к другому.

Можно также сравнивать логарифмы с третьим числом и на основании этого делать вывод о том, что меньше, а что больше. Например, подумай, как сравнить вот эти два логарифма?

Небольшая подсказка - для сравнения тебе очень поможет логарифм, аргумент которого будет равен.

Подумал? Давай решать вместе.

Мы легко сравним с тобой эти два логарифма:

Не знаешь как? Смотри выше. Мы только что это разбирали. Какой знак там будет? Правильно:

Согласен?

Сравним между собой:

У тебя должно получиться следующее:

А теперь соедини все наши выводы в один. Получилось?

5. Сравнение тригонометрических выражений.

Что такое синус, косинус, тангенс, котангенс? Для чего нужна единичная окружность и как на ней найти значение тригонометрических функций? Если ты не знаешь ответы на эти вопросы, очень рекомендую тебе прочитать теорию по этой теме. А если знаешь, то сравнить тригонометрические выражения между собой для тебя не составляет труда!

Немного освежим память. Нарисуем единичную тригонометрическую окружность и вписанный в нее треугольник. Справился? Теперь отметь, по какой стороне у нас откладывается косинус, а по какой синус, используя стороны треугольника. (ты, конечно помнишь, что синус, это отношение противолежащей стороны к гипотенузе, а косинус прилежащей?). Нарисовал? Отлично! Последний штрих - проставь, где у нас будет, где и так далее. Проставил? Фух) Сравниваем, что получилось у меня и у тебя.

Фух! А теперь приступаем к сравнению!

Допустим, нам необходимо сравнить и. Нарисуй эти углы, используя подсказки в рамочках (где у нас отмечено, где), откладывая точки на единичной окружности. Справился? Вот что у меня получилось.

Теперь опустим перпендикуляр из точек, отмеченных нами на окружности на ось … Какую? Какая ось у нас показывает значение синусов? Правильно, . Вот что у тебя должно получиться:

Глядя на этот рисунок, что больше: или? Конечно, ведь точка находится выше точки.

Аналогичным образом мы сравниваем значение косинусов. Только перпендикуляр мы опускаем на ось… Верно, . Соответственно, смотрим, какая точка находится правее (ну или выше, как в случае с синусами), то значение и больше.

Наверное, ты уже догадываешься, как сравнивать тангенсы, верно? Все, что нужно, знать что такое тангенс. Так что такое тангенс?) Правильно, отношение синуса к косинусу.

Чтобы сравнить тангенсы мы так же рисуем угол, как и в предыдущем случае. Допустим, нам необходимо сравнить:

Нарисовал? Теперь так же отмечаем значения синуса на координатной оси. Отметил? А теперь укажи значения косинуса на координатной прямой. Получилось? Давай сравним:

А теперь проанализируй написанное. - мы большой отрезок делим на маленький. В ответе будет значение, которое точно больше единицы. Верно?

А при мы маленький делим на большой. В ответе будет число, которое точно меньше единицы.

Так значение какого тригонометрического выражения больше?

Правильно:

Как ты теперь понимаешь, сравнение котангенсов - то же самое, только наоборот: мы смотрим, как относятся друг к другу отрезки, определяющие косинус и синус.

Попробуй самостоятельно сравнить следующие тригонометрические выражения:

Примеры.

Ответы.

СРАВНЕНИЕ ЧИСЕЛ. СРЕДНИЙ УРОВЕНЬ.

Какое из чисел больше: или? Ответ очевиден. А теперь: или? Уже не так очевидно, правда? А так: или?

Часто нужно знать, какое из числовых выражений больше. Например, чтобы при решении неравенства расставить точки на оси в правильном порядке.

Сейчас научу тебя сравнивать такие числа.

Если надо сравнить числа и, между ними ставим знак (происходит от латинского слова Versus или сокращенно vs. - против): . Этот знак заменяет неизвестный нам знак неравенства (). Далее будем выполнять тождественные преобразования до тех пор, пока не станет ясно, какой именно знак нужно поставить между числами.

Суть сравнения чисел состоит в следующем: мы относимся к знаку так, будто это какой-то знак неравенства. И с выражением мы можем делать все то же, что делаем обычно с неравенствами:

  • прибавить любое число к обеим частям (и вычесть, конечно, тоже можем)
  • «перенести все в одну сторону», то есть вычесть из обеих частей одно из сравниваемых выражений. На месте вычитаемого выражения останется: .
  • домножать или делить на одно и то же число. Если это число отрицательное, знак неравенства меняется на противоположный: .
  • возводить обе части в одну и ту же степень. Если эта степень - четная, необходимо убедиться, что обе части имеют одинаковый знак; если обе части положительны, при возведении в степень знак не меняется, а если отрицательны, тогда меняется на противоположный.
  • извлечь корень одинаковой степени из обеих частей. Если извлекаем корень четной степени, необходимо предварительно убедиться, что оба выражения неотрицательны.
  • любые другие равносильные преобразования.

Важно: преобразования желательно делать такими, чтобы знак неравенства не менялся! То есть в ходе преобразований нежелательно домножать на отрицательное число, и нельзя возводить в квадрат, если одна из частей отрицательна.

Разберем несколько типичных ситуаций.

1. Возведение в степень.

Пример.

Что больше: или?

Решение.

Поскольку обе части неравенства положительны, можем возвести в квадрат, чтобы избавиться от корня:

Пример.

Что больше: или?

Решение.

Здесь тоже можем возвести в квадрат, но это нам поможет избавиться только от квадратного корня. Здесь надо возводить в такую степень, чтобы оба корня исчезли. Значит, показатель этой степени должен делиться и на (степень первого корня), и на. Таким числом является, значит, возводим в -ю степень:

2. Умножение на сопряженное.

Пример.

Что больше: или?

Решение.

Домножим и разделим каждую разность на сопряженную сумму:

Очевидно, что знаменатель в правой части больше знаменателя в левой. Поэтому правая дробь меньше левой:

3. Вычитание

Вспомним, что.

Пример.

Что больше: или?

Решение.

Конечно, мы могли бы возвести все в квадрат, перегруппировать, и снова возвести в квадрат. Но можно поступить хитрее:

Видно, что в левой части каждое слагаемое меньше каждого слагаемого, находящегося в правой части.

Соответственно, сумма всех слагаемых, находящихся в левой части, меньше суммы всех слагаемых, находящихся в правой части.

Но будь внимателен! У нас спрашивали что больше...

Правая часть больше.

Пример.

Сравните числа и.

Решение.

Вспоминаем формулы тригонометрии:

Проверим, в каких четвертях на тригонометрической окружности лежат точки и.

4. Деление.

Здесь тоже используем простое правило: .

При или, то есть.

При знак меняется: .

Пример.

Выполни сравнение: .

Решение.

5. Сравните числа с третьим числом

Если и, то (закон транзитивности).

Пример.

Сравните.

Решение.

Сравним числа не друг с другом, а с числом.

Очевидно, что.

С другой стороны, .

Пример.

Что больше: или?

Решение.

Оба числа больше, но меньше. Подберем такое число, чтобы оно было больше одного, но меньше другого. Например, . Проверим:

6. Что делать с логарифмами?

Ничего особенного. Как избавляться от логарифмов, подробно описано в теме . Основные правила такие:

\[{\log _a}x \vee b{\rm{ }} \Leftrightarrow {\rm{ }}\left[ {\begin{array}{*{20}{l}}{x \vee {a^b}\;{\rm{при}}\;a > 1}\\{x \wedge {a^b}\;{\rm{при}}\;0 < a < 1}\end{array}} \right.\] или \[{\log _a}x \vee {\log _a}y{\rm{ }} \Leftrightarrow {\rm{ }}\left[ {\begin{array}{*{20}{l}}{x \vee y\;{\rm{при}}\;a > 1}\\{x \wedge y\;{\rm{при}}\;0 < a < 1}\end{array}} \right.\]

Также можем добавить правило про логарифмы с разными основаниями и одинаковым аргументом:

Объяснить его можно так: чем больше основание, тем в меньшую степень его придется возвести, чтобы получить один и тот же. Если же основание меньше, то все наоборот, так как соответствующая функция монотонно убывающая.

Пример.

Сравните числа: и.

Решение.

Согласно вышеописанным правилам:

А теперь формула для продвинутых.

Правило сравнения логарифмов можно записать и короче:

Пример.

Что больше: или?

Решение.

Пример.

Сравните, какое из чисел больше: .

Решение.

СРАВНЕНИЕ ЧИСЕЛ. КОРОТКО О ГЛАВНОМ

1. Возведение в степень

Если обе части неравенства положительны, их можно возвести в квадрат, чтобы избавиться от корня

2. Умножение на сопряженное

Сопряженным называется множитель, дополняющий выражение до формулы разности квадратов: - сопряженное для и наоборот, т.к. .

3. Вычитаение

4. Деление

При или то есть

При знак меняется:

5. Сравнение с третьим числом

Если и, то

6. Сравнение логарифмов

Основные правила:

Логарифмы с разными основаниями и одинаковым аргументом:

ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике по цене "чашка кофе в месяц",

А также получить бессрочный доступ к учебнику "YouClever", Программе подготовки (решебнику) "100gia", неограниченному пробному ЕГЭ и ОГЭ, 6000 задач с разбором решений и к другим сервисам YouClever и 100gia.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!