Упражнения. Питание. Диеты. Тренировки. Спорт

0 6 в периоде. Как записать число в периоде

Что если они знают теорию рядов, то значит без неё никаких метаматических понятий вводить нельзя. Более того, эти люди полагают, что тот, кто не использует её повсеместно, - невежда. Оставим воззрения этих людей на их совести. Давайте лучше разберёмся с тем, что такое бесконечная периодическая дробь и как с ней быть нам, необразованным людям, не знающим пределов.

Поделим 237 на 5. Нет, не нужно запускать «Калькулятор». Давайте лучше вспомним среднюю (или даже начальную?) школу и просто поделим столбиком:

Ну как, вспомнили? Тогда можно и к делу переходить.

Понятие «дробь» в математике имеет два значения:

  1. Нецелое число.
  2. Форма записи нецелого числа.
Существует два вида дробей - в смысле, две формы записи нецелых чисел:
  1. Простые (или вертикальные ) дроби, вроде 1/2 или 237/5.
  2. Десятичные дроби, например, 0,5 или 47,4.
Заметим, что вообще само использование дроби-записи не означает, что записанное есть дробь-число, например 3/3 или 7,0 - не дроби в первом смысле слова, но во втором, конечно, дроби.
В математике, вообще искони принят счёт десятичный, а потому и десятичные дроби удобнее простых, т. е. дробь с десятичным знаменателем (Владимир Даль. Толковый словарь живого великорусского языка. «Десять»).
А раз так, то хочется всякую дробь вертикальную сделать десятичной («горизонтальной»). А для этого нужно просто-напросто числитель поделить на знаменатель. Возьмём, например, дробь 1/3 и попробуем сделать из неё десятичную.

Даже совсем необразованный заметит: сколько ни дели - не разделится: так и будут тройки до бесконечности появляться. Так и запишем: 0,33... Имеем в виду при этом «число, которое получается, когда делишь 1 на 3», или, короче, «одна третья». Естественно, что одна третья - дробь в первом смысле слова, а «1/3» и «0,33...» - дроби во втором смысле слова, то есть формы записи числа, которое находится на числовой прямой на таком расстоянии от нуля, что если трижды его отложить, получится единица.

Теперь попробуем разделить 5 на 6:

Снова запишем: 0,833... Имеем в виду «число, которое получается, когда делишь 5 на 6», или, короче, «пять шестых». Однако, тут возникает путаница: имеется ли в виду 0,83333 (и дальше тройки повторяются), или же 0,833833 (и дальше 833 повторяется). Поэтому запись с многоточием нас не устраивает: непонятно, откуда начинается повтряющаяся часть (она называется «период»). Поэтому период мы будем брать в скобки, вот так: 0,(3); 0,8(3).

0,(3) не просто равно одной третьей, это есть одна третья, ведь мы специально эту запись придумали, чтобы представлять это число в виде десятичной дроби.

Эта запись и называется бесконечной периодической дробью , или просто периодической дробью.

Всегда, когда мы делим одно число на другое, если не получается дробь конечная, то получается дробь бесконечная периодическая, то есть обязательно когда-нибудь последовательности цифр начнут повторяться. Почему это так можно понять чисто умозрительно, посмотрев внимательно на алгоритм деления столбиком:

В местах, обозначенных галочками, не могут всё время получаться разные пары чисел (потому, что таких пар в принципе конечное множество). А как только там появится такая пара, которая уже была, разность тоже будет такой же - и дальше весь процесс начнёт повторяться. Нет нужды проверять это, ведь совершенно очевидно, что при повторении тех же действий результаты будут те же.

Теперь, когда мы хорошо понимаем суть периодической дроби, давайте попробуем умножить одну треть на три. Да, получится, конечно, один, но давайте запишем эту дробь в десятичной форме и умножим столбиком (двусмыслицы из-за многоточия здесь не возникает, так как все цифры после запятой одинаковые):

И снова мы замечаем, что всё время будут после запятой появляться девятки, девятки и девятки. То есть, используя, обратно, скобочную запись, мы получим 0,(9). Поскольку мы знаем, что произведение одной трети и трёх есть единица, то 0,(9) - это такая вот причудливая форма записи единицы. Однако использовать такую форму записи нецелесообразно, ведь единица прекрасно записывается и без использования периода, вот так: 1.

Как видим, 0,(9) - это один из тех случаев, когда целое число записано в форме дроби, вроде 3/3 или 7,0. То есть, 0,(9) - это дробь лишь во втором смысле слова, но никак не в первом.

Вот так, безо всяких пределов и рядов мы разобрались с тем, что такое 0,(9) и как с ним бороться.

Но всё же вспомним о том, что на самом-то деле мы умные и изучали анализ. Действительно, трудно отрицать, что:

Но, пожалуй, никто не будет спорить и с тем, что:

Всё это, конечно, верно. Действительно, 0,(9) является и суммой приведённого ряда, и удвоенным синусом указанного угла, и натуральным логарифмом числа Эйлера.

Но ни то, ни другое, ни третье не является определением.

Утверждать, что 0,(9) - сумма бесконечного ряда 9/(10 n), при n от единицы, - это всё равно, что утверждать, что синус - это сумма бесконечного ряда Тейлора:

Это совершенно верно , и это является важнейшим фактом для вычислительной математики, но это не определение, и, что самое главное, это ничуть не приближает человека к пониманию сути синуса. Суть же синуса некоторого угла состоит в том, что это всего навсего отношение противолежащего углу катета к гипотенузе.

Дак вот, периодическая дробь - это всего навсего десятичная дробь, которая получается, когда при делении столбиком один и тот же набор цифр повторется. Анализа тут нет и в помине.

И вот тут-то возникает вопрос: откуда вообще мы взяли число 0,(9)? Что на что мы делим столбиком, чтобы его получить? Действительно, нет таких чисел, при делении которых друг на друга столбиком мы бы имели бесконечно появляющиеся девятки. Но нам же удалось получить это число, умножая столбиком 0,(3) на 3? Не совсем. Ведь умножать нужно справа налево, чтобы корректно учитывать переносы разрядов, а мы это делали слева направо, хитро воспользовавшись тем, что переносов нигде всё равно не возникает. Поэтому правомерность записи 0,(9) зависит от того, признаём ли мы правомерность такого умножения столбиком или нет.

Следовательно, можно вообще сказать, что запись 0,(9) некорректна - и в определённой степени быть правым. Однако, поскольку нотация a ,(b ) принята, то просто некрасиво отказываться от неё при b = 9; лучше определиться с тем, что такая запись означает. Так что, если мы вообще принимаем запись 0,(9), то эта запись, конечно, означает число один.

Осталось лишь добавить, что если бы мы использовали, скажем, троичную систему счисления, то при делении столбиком единицы (1 3) на тройку (10 3) получилось бы 0,1 3 (читается «ноль целых одна третья»), а при делении единицы на двойку получилось бы 0,(1) 3 .

Так что периодичность дроби-записи - это не объективная какая-то характеристика дроби-числа, а всего лишь побочный эффект использования той или иной системы счисления.

Помните, как в самом первом уроке про десятичные дроби я говорил, что существуют числовые дроби, не представимые в виде десятичных (см. урок «Десятичные дроби »)? Мы еще учились раскладывать знаменатели дробей на множители, чтобы проверить, нет ли там чисел, отличных от 2 и 5.

Так вот: я наврал. И сегодня мы научимся переводить абсолютно любую числовую дробь в десятичную. Заодно познакомимся с целым классом дробей с бесконечной значащей частью.

Периодическая десятичная дробь - это любая десятичная дробь, у которой:

  1. Значащая часть состоит из бесконечного количества цифр;
  2. Через определенные интервалы цифры в значащей части повторяются.

Набор повторяющихся цифр, из которых состоит значащая часть, называется периодической частью дроби, а количество цифр в этом наборе - периодом дроби. Остальной отрезок значащей части, который не повторяется, называется непериодической частью.

Поскольку определений много, стоит подробно рассмотреть несколько таких дробей:

Эта дробь встречается в задачах чаще всего. Непериодическая часть: 0; периодическая часть: 3; длина периода: 1.

Непериодическая часть: 0,58; периодическая часть: 3; длина периода: снова 1.

Непериодическая часть: 1; периодическая часть: 54; длина периода: 2.

Непериодическая часть: 0; периодическая часть: 641025; длина периода: 6. Для удобства повторяющиеся части отделены друг от друга пробелом - в настоящем решении так делать не обязательно.

Непериодическая часть: 3066; периодическая часть: 6; длина периода: 1.

Как видите, определение периодической дроби основано на понятии значащей части числа . Поэтому если вы забыли что это такое, рекомендую повторить - см. урок « ».

Переход к периодической десятичной дроби

Рассмотрим обыкновенную дробь вида a /b . Разложим ее знаменатель на простые множители. Возможны два варианта:

  1. В разложении присутствуют только множители 2 и 5. Эти дроби легко приводятся к десятичным - см. урок «Десятичные дроби ». Такие нас не интересуют;
  2. В разложении присутствует что-то еще, кроме 2 и 5. В этом случае дробь непредставима в виде десятичной, зато из нее можно сделать периодическую десятичную дробь.

Чтобы задать периодическую десятичную дробь, надо найти ее периодическую и непериодическую часть. Как? Переведите дробь в неправильную, а затем разделите числитель на знаменатель «уголком».

При этом будет происходить следующее:

  1. Сначала разделится целая часть , если она есть;
  2. Возможно, будет несколько чисел после десятичной точки;
  3. Через некоторое время цифры начнут повторяться .

Вот и все! Повторяющиеся цифры после десятичной точки обозначаем периодической частью, а то, что стоит спереди - непериодической.

Задача. Переведите обыкновенные дроби в периодические десятичные:

Все дроби без целой части, поэтому просто делим числитель на знаменатель «уголком»:

Как видим, остатки повторяются. Запишем дробь в «правильном» виде: 1,733 ... = 1,7(3).

В итоге получается дробь: 0,5833 ... = 0,58(3).

Записываем в нормальном виде: 4,0909 ... = 4,(09).

Получаем дробь: 0,4141 ... = 0,(41).

Переход от периодической десятичной дроби к обыкновенной

Рассмотрим периодическую десятичную дробь X = abc (a 1 b 1 c 1). Требуется перевести ее в классическую «двухэтажную». Для этого выполним четыре простых шага:

  1. Найдите период дроби, т.е. подсчитайте, сколько цифр находится в периодической части. Пусть это будет число k ;
  2. Найдите значение выражения X · 10 k . Это равносильно сдвигу десятичной точки на полный период вправо - см. урок «Умножение и деление десятичных дробей »;
  3. Из полученного числа надо вычесть исходное выражение. При этом периодическая часть «сжигается», и остается обычная дробь ;
  4. В полученном уравнении найти X . Все десятичные дроби переводим в обыкновенные.

Задача. Приведите к обыкновенной неправильной дроби числа:

  • 9,(6);
  • 32,(39);
  • 0,30(5);
  • 0,(2475).

Работаем с первой дробью: X = 9,(6) = 9,666 ...

В скобках содержится лишь одна цифра, поэтому период k = 1. Далее умножаем эту дробь на 10 k = 10 1 = 10. Имеем:

10X = 10 · 9,6666 ... = 96,666 ...

Вычитаем исходную дробь и решаем уравнение:

10X − X = 96,666 ... − 9,666 ... = 96 − 9 = 87;
9X = 87;
X = 87/9 = 29/3.

Теперь разберемся со второй дробью. Итак, X = 32,(39) = 32,393939 ...

Период k = 2, поэтому умножаем все на 10 k = 10 2 = 100:

100X = 100 · 32,393939 ... = 3239,3939 ...

Снова вычитаем исходную дробь и решаем уравнение:

100X − X = 3239,3939 ... − 32,3939 ... = 3239 − 32 = 3207;
99X = 3207;
X = 3207/99 = 1069/33.

Приступаем к третьей дроби: X = 0,30(5) = 0,30555 ... Схема та же самая, поэтому я просто приведу выкладки:

Период k = 1 ⇒ умножаем все на 10 k = 10 1 = 10;

10X = 10 · 0,30555 ... = 3,05555 ...
10X − X = 3,0555 ... − 0,305555 ... = 2,75 = 11/4;
9X = 11/4;
X = (11/4) : 9 = 11/36.

Наконец, последняя дробь: X = 0,(2475) = 0,2475 2475 ... Опять же, для удобства периодические части отделены друг от друга пробелами. Имеем:

k = 4 ⇒ 10 k = 10 4 = 10 000;
10 000X = 10 000 · 0,2475 2475 = 2475,2475 ...
10 000X − X = 2475,2475 ... − 0,2475 2475 ... = 2475;
9999X = 2475;
X = 2475: 9999 = 25/101.

Операция деления предполагает участие в ней нескольких основных компонентов. Первый из них - так называемое делимое, то есть число, которое подвергается процедуре деления. Второй - делитель, то есть число, на которое производится деление. Третий - частное, то есть результат операции деления делимого на делитель.

Результат деления

Самым простым вариантом результата, который может получиться при использовании в качестве делимого и делителя двух целых положительных чисел, является еще одно целое положительное число. Например, при делении 6 на 2 частное будет равно 3. Такая ситуация возможна, если делимое является делителю, то есть без остатка делится на него.

Однако существуют и другие варианты, когда осуществить операцию деления без остатка невозможно. В этом случае частным становится нецелое число, которое можно записать в виде комбинации целой и дробной частей. Например, при делении 5 на 2 частное составит 2,5.

Число в периоде

Один из вариантов, который может получиться в случае, если делимое не является кратным делителю, представляет собой так называемое число в периоде. Оно может возникнуть в результате деления в том случае, если частное оказывается бесконечно повторяющимся набором цифр. Например, число в периоде может появиться при делении числа 2 на 3. В этой ситуации результат, в виде десятичной дроби, будет выражен в виде комбинации бесконечного количества цифр 6 после запятой.

Для того чтобы обозначить результат такого деления, был изобретен специальный способ записи чисел в периоде: такое число обозначается помещением повторяющейся цифры в скобки. Например, результат деления 2 на 3 будет записываться с использованием этого способа как 0,(6). Указанный вариант записи применим также в случае, если повторяющейся является только часть числа, получившегося в результате деления.

Например, при делении 5 на 6 результатом будет периодическое число, имеющее вид 0,8(3). Использование этого способа, во-первых, является наиболее эффективным по сравнению с попыткой записать все или часть цифр числа в периоде, во-вторых, обладает большей точностью в сравнении с другим способом передачи таких чисел - округлением, а кроме того, позволяет отличить числа в периоде от точной десятичной дроби с соответствующим значением при сопоставлении величины этих чисел. Так, например, очевидно, что 0,(6) - существенно больше, чем 0,6.

Чтобы рациональное число m/n записать в виде десятичной дроби, нужно числитель разделить на знаменатель. При этом частное записывается конечной или бесконечной десятичной дробью.

Записать данное число в виде десятичной дроби.

Решение. Разделим в столбик числитель каждой дроби на ее знаменатель: а) делим 6 на 25; б) делим 2 на 3; в) делим 1 на 2, а затем получившуюся дробь припишем к единице — целой части данного смешанного числа.

Несократимые обыкновенные дроби, знаменатели которых не содержат других простых делителей, кроме 2 и 5 , записываются конечной десятичной дробью.

В примере 1 в случае а) знаменатель 25=5·5; в случае в) знаменатель равен 2, поэтому, мы получили конечные десятичные дроби 0,24 и 1,5 . В случае б) знаменатель равен 3, поэтому результат нельзя записать в виде конечной десятичной дроби.

А можно ли без деления в столбик обратить в десятичную дробь такую обыкновенную дробь, знаменатель которой не содержит других делителей, кроме 2 и 5? Разберемся! Какую дробь называют десятичной и записывают без дробной черты? Ответ: дробь со знаменателем 10; 100; 1000 и т.д. А каждое из этих чисел — это произведение равного количества «двоек» и «пятерок». На самом деле: 10=2 ·5 ; 100=2 ·5 ·2 ·5 ; 1000=2 ·5 ·2 ·5 ·2 ·5 и т.д.

Следовательно, знаменатель несократимой обыкновенной дроби нужно будет представить в виде произведения «двоек» и «пятерок», а затем домножить на 2 и (или) на 5 так, чтобы «двоек» и «пятерок» стало поровну. Тогда знаменатель дроби будет равен 10 или 100 или 1000 и т.д. Чтобы значение дроби не изменилось — числитель дроби умножим на то же число, на которое умножили знаменатель.

Представить в виде десятичной дроби следующие обыкновенные дроби:

Решение. Каждая из данных дробей является несократимой. Разложим знаменатель каждой дроби на простые множители.

20=2·2·5. Вывод: не хватает одной «пятерки».

8=2·2·2. Вывод: не хватает трех «пятерок».

25=5·5. Вывод: не хватает двух «двоек».

Замечание. На практике чаще не используют разложение знаменателя на множители, а просто задаются вопросом: на сколько нужно умножить знаменатель, чтобы в результате получилась единица с нулями (10 или 100 или 1000 и т.д.). А затем на это же число умножают и числитель.

Так, в случае а) (пример 2 ) из числа 20 можно получить 100 умножением на 5, поэтому, на 5 нужно умножить числитель и знаменатель.

В случае б) (пример 2 ) из числа 8 число 100 не получится, но получится число 1000 умножением на 125. На 125 умножается и числитель (3) и знаменатель (8) дроби.

В случае в) (пример 2 ) из 25 получится 100, если умножить на 4. Значит, и числитель 8 нужно умножить на 4.

Бесконечная десятичная дробь, у которой одна или несколько цифр неизменно повторяются в одной и той же последовательности, называется периодической десятичной дробью. Совокупность повторяющихся цифр называется периодом этой дроби. Для краткости период дроби записывают один раз, заключая его в круглые скобки.

В случае б) (пример 1 ) повторяющаяся цифра одна и равна 6. Поэтому, наш результат 0,66... запишется так: 0,(6) . Читают: нуль целых, шесть в периоде.

Если между запятой и первым периодом есть одна или несколько не повторяющихся цифр, то такая периодическая дробь называется смешанной периодической дробью.

Несократимая обыкновенная дробь, знаменатель которой вместе с другими множителями содержит множитель 2 или 5 , обращается в смешанную периодическую дробь.

Записать в виде десятичной дроби числа:

Любое рациональное число можно записать в виде бесконечной периодической десятичной дроби.

Записать в виде бесконечной периодической дроби числа.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!