Упражнения. Питание. Диеты. Тренировки. Спорт

Что такое эффект Магнуса? Эффект магнуса и его невероятные применения

Эффект Магнуса состоит в том, что вращающийся цилиндр создаёт в пространстве вокруг себя вихревое движение. Скорость движения воздуха вокруг вращающегося цилиндра различна, следовательно и различно давление порождающее силу, которая может использоваться.

Открытие эффекта

Генрих Густав Магнус

В 1850-х годах немецкий физик и химик Генрих Густав Магнус заметил, что при движении воздуха через вращающийся предмет, например, шарик появляется боковое усилие.

Приложение силы происходит следующим образом:

Если мяч не вращается, воздух будет проходить прямо мимо него растягиваясь прямо за мячом, как хвост кометы. Если поворачивать поверхность вращающегося шара, то он тащит воздух с ним. Вращение отклоняет мяч под углом, ближе к стороне шара который вращается на встречный воздух.

Благодаря третьему закону Исаака Ньютона каждое действие должно иметь равное и противоположное противодействие, поэтому деформирующаяся волна толкает шарик в противоположном направлении, в сторону мяча, который отворачивается от встречного воздуха.

Таким образом, вращающийся шар получает боковую силу.

Применение силы Магнуса

В начале 20 века, ученые предложили использовать эффект Магнуса для приведения в движение кораблей.

Немецкий инженер Антон Флеттнер заменил 420 квадратных метров паруса на шхуне двумя 15-метровыми стальными роторами паруса, которые вращались с помощью небольшого двигателя. Флеттнер показал, что ветер вокруг ротора паруса создавал силу, по бокам ротора паруса, двигая корабль вперед. В 1926 году судно пересекло Атлантический океан. Однако, Флеттнеру не удалось найти инвесторов, заинтересованных с ротор парусной тягой на кораблях. В то время цены на топливо были просто слишком малы и не было никаких экологических норм, ограничивающих с корабля.

Позднее применен на танкере, принадлежащим датской компании Maersk и пассажирском судне. Эти суда оснащены вращающимися цилиндрами на их палубах. Установленные вертикально с высотой порядка 10 этажей эти “ротор паруса” могут сократить расход топлива до 10%. Экономия транспортной компании составила сотни тысяч долларов. Кроме того улучшается экология в результате уменьшения выбросов углекислого газа в атмосферу за одну поездку.

Ротор паруса работают по принципу аэродинамики известного как эффект Магнуса.

Сегодня более 90% товаров перевозится через океан, а китайский порт Шанхай оправляет по 36 миллионов контейнеров ежегодно. Коммерция портит окружающую среду, нарушает : большинство судов сжигают мазут, выделяют диоксид углерода, а также сажу и соединения серы, которые способствуют выпадению кислотных дождей.

Эффективность новой силы

На современных судах разработан ротор парус основанный на оригинальном эффекте Магнуса с использованием современных материалов, таких как углеродные и стеклянные волокна, что снизило вес в три раза. Это означает, что меньше энергии требуется для вращения ротора, что приводит к более эффективной силовой установке.

Также разработано программное обеспечение, которое регулирует скорость ротора вращения до нескольких сотен оборотов в минуту для максимальной скорости.

Технология также должна быть безопасной при прекращении движения и остается только сила сопротивления. И что силы сопротивления, вероятно, гораздо менее значительные, чем испытывает корпус судна при движении по воде и нет риска опрокидывания судов.

Ротор-паруса, как правило, эффективны, если движется быстрее, чем 18 километров в час примерно 10 узлов и дует на нос корабля под углом не менее 20°. Такие условия часто встречаются в северной части Тихого океана и Северной Атлантики по маршрутам доставки.

В отличие от оригинального эффекта Магнуса новые версии ротор-парусов предназначены только для обеспечения дополнительной тяги, а не полностью заменяют судовой двигатель.

Также испытания проведены на грузовом судне, которое перевозит автомобили и грузовики между Нидерландами и Соединенным Королевством. Когда речь идет о дооборудовании двумя 18-метровыми ротор-паруса, судно израсходовало на 6% меньше топлива. Также устанавливается ротор на нефтяной танкер и пассажирское круизное судно. Контейнеровозы не подходят для роторных парусов, потому что их палубы забиты контейнерами.

Время покажет, станет ли этот новый взгляд на старое открытие и изобретение успешным. Но с новыми материалами проблема может быть решена и еще предстоит увидеть много грузовых и пассажирских судов с использованием эффекта Магнуса.

Помимо ослепительного внешнего вида и забавного голоса Дэвид Бекхем известен своими кручеными ударами. Для начала он отбегал назад, а после свистка судьи, пробегал вперед и аккуратно бил по мячу правой ногой. Казалось, что мяч летит по неправильной траектории и не попадет в цель, но внезапно его начинало закручивать в нужном направлении.

Крученый Роберта Карлоса

Траектория полета мяча обманчива для вратаря: его закручивает достаточно для того, чтобы он смог влететь в границу ворот. Известным трюком такого рода остается “невозможный гол”, выполненный Роберто Карлосом в матче против Франции на чемпионате мира 1998 года. Вы могли стать свидетелем настоящего чуда.

Это явление можно наблюдать не только в футболе, но и в регби, теннисе, настольном теннисе, баскетболе, бейсболе и в любом виде спорта, который включает в себя мяч.

Более того, мячи не просто поворачиваются в одном направлении; крученые в бейсболе и футболе одинаково не любят как нападающие так и вратари за их волатильность. Этот вид движения называется эффектом Магнуса.

Что такое эффект магнуса?

Эффект назван в честь немецкого физика Густава Магнуса , который впервые описал его в 1853 году. Однако, первым, кто его обнаружил и понял его природу, был Исаак Ньютон. Наблюдая за теннисным матчем в Кембридже, Ньютон заметил, как при ударе снизу вверх (топ-спин) мяч падает быстрее, чем можно было бы ожидать. Напротив, подкручивание мяча определенным образом задавало ему обратное вращение, заставляя его осторожно подниматься и скользить над поверхностью на небольшой высоте.

Чтобы понять почему, давайте, сделаем самое необходимое для решения физических задач — нарисуем диаграмму.

На диаграмме изображен мяч, который летит вперед и поворачивается по часовой стрелке.”Решетка” из стрелок — это изображение сил сопротивления встречных потоков воздуха. Сопротивление воздуха — это то, что вы чувствуете, когда мчитесь на велосипеде, или выставляете руку из окна движущегося автомобиля.

Линии поля сопротивления направлены в одну сторону с движением нижней части мяча, и в противоположную с движением верхней части мяча. Первые создают область низкого давления, в то время как турбулентность на другой стороне мяча создает область высокого давления.

Эта разность давлений закручивает мяч по направлению перепада давления — от высокого к низкому. Это закручивание может быть вызвано действием некой силы. Она изображена стрелкой, перпендикулярной оси вращения, в направлении перепада давления, и называется силой Магнуса.

Сила Магнуса является следствием Третьего закона Ньютона. Эта сила равна и противоположна силе с которой воздух действует на мяч, в качестве реакции на силу, которую мяч оказывает на воздух.

Объект воздействует на воздух, и в качестве реакции воздух подталкивает объект в противоположном направлении. Эффект Магнуса можно увидеть на примерах бейсбольных мячей, теннисных мячей, мячей для крикета и пинг-понга. Эффект усиливается и становится более заметным как раз при игре в пинг-понг, из-за небольшого размера и маленькой плотности мячей. Правильный удар отбрасывает мячик дальше, и соперник не может его достать. Тот же принцип объясняет, как летают самолеты Флеттнера (моторные самолеты).

Крученые удары

Наконец, поговорим о крученых ударах, которые в бейсболе и футболе, выполняются благодаря эффекту Магнуса, проявляющемуся на невращающихся мячах. В этом случае мяч становится послушным, поддаваясь порывам встречного потока воздуха. При отсутствии вращения нет перепада давления, который управляет движением мяча.

Мяч закручивается непредсказуемо. Поэтому отбивающий не может предсказать траекторию движения мяча и точку куда он прилетит.

Конечно, для выполнения хорошего крученого удара требуются навыки — запускаешь мяч слишком медленно он приземляется преждевременно, слишком быстро — перелетит, не попав в цель. Конечно, точность удара может быть достигнута только после многих лет усиленных тренировок. Однако даже не может гарантировать стопроцентного результата.

Направлению потока. Это является результатом совместного воздействия таких физических явлений, как эффект Бернулли и образования пограничного слоя в среде вокруг обтекаемого объекта.

Вращающийся объект создаёт в среде вокруг себя вихревое движение. С одной стороны объекта направление вихря совпадает с направлением обтекающего потока и, соответственно, скорость движения среды с этой стороны увеличивается. С другой стороны объекта направление вихря противоположно направлению движения потока, и скорость движения среды уменьшается. Ввиду этой разности скоростей возникает разность давлений, порождающая поперечную силу от той стороны вращающегося тела, на которой направление вращения и направление потока противоположны, к той стороне, на которой эти направления совпадают. Такое явление часто применяется в спорте, см., например, специальные удары: топ-спин , сухой лист в футболе или система Hop-Up в страйкболе .

Эффект впервые описан немецким физиком Генрихом Магнусом в 1853 году .

Формула для расчёта силы

Идеальная жидкость

Даже если жидкость не обладает внутренним трением (вязкостью), можно рассчитать эффект подъёмной силы.

Пусть шар находится в потоке набегающей на него идеальной жидкости. Скорость потока на бесконечности (вблизи она, конечно, искажается) \vec{u}_\infty. Чтобы сымитировать вращение шара, введём циркуляцию скорости \Gamma вокруг него. Исходя из закона Бернулли , можно получить, что полная сила, действующая в таком случае на шар, равна:

\vec{R}=-\rho\vec{\Gamma}\times\vec{u}_\infty.

Видно, что:

  1. полная сила перпендикулярна потоку, то есть сила сопротивления потока идеальной жидкости на шар равна нулю (парадокс Даламбера)
  2. сила, в зависимости от соотношения направлений циркуляции и скорости потока, сводится к подъёмной или опускающей силе.

Вязкая жидкость

Следующее уравнение описывает необходимые величины для подсчёта подъёмной силы, создаваемой вращением шара в реальной жидкости.

{F}={1\over 2} { \rho} {V^2AC_l} F- подъёмная сила \rho - плотность жидкости. V- скорость шара относительно среды A- поперечная площадь шара {C_l} - коэффициент подъёмной силы (англ. )

Коэффициент подъёмной силы может быть определён из графиков экспериментальных данных с использованием числа Рейнольдса и коэффициента вращения ((угловая скорость*диаметр)/(2*линейная скорость)). Для коэффициентов вращения от 0,5 до 4,5 коэффициент подъёмной силы находится в диапазоне от 0,2 до 0,6.

Применение

Ветрогенераторы

Ветрогенератор «воздушный ротор» представляет собой привязной аппарат, который поднимается гелием на высоту от 120 до 300 метров)

Турбопаруса на кораблях

С 1980-х годов эксплуатировалось судно Кусто Алсион со сложным турбопарусом, использующим эффект Магнуса.

С 2010 года эксплуатируется грузовое судно E-Ship 1 с более простыми роторными парусами Антона Флеттнера

Напишите отзыв о статье "Эффект Магнуса"

Примечания

Литература

  • Л. Прандтль «Эффект Магнуса и ветряной корабль.» (журнал «Успехи физических наук» выпуск 1-2. 1925 г)
  • Л. Прандтль. О движении жидкости при очень малом трении. - 1905.

Ссылки

  • // elementy.ru
  • // technicamolodezhi.ru

Отрывок, характеризующий Эффект Магнуса

«Ну, наконец все переделал, теперь отдохну», – подумал князь и предоставил Тихону раздевать себя.
Досадливо морщась от усилий, которые нужно было делать, чтобы снять кафтан и панталоны, князь разделся, тяжело опустился на кровать и как будто задумался, презрительно глядя на свои желтые, иссохшие ноги. Он не задумался, а он медлил перед предстоявшим ему трудом поднять эти ноги и передвинуться на кровати. «Ох, как тяжело! Ох, хоть бы поскорее, поскорее кончились эти труды, и вы бы отпустили меня! – думал он. Он сделал, поджав губы, в двадцатый раз это усилие и лег. Но едва он лег, как вдруг вся постель равномерно заходила под ним вперед и назад, как будто тяжело дыша и толкаясь. Это бывало с ним почти каждую ночь. Он открыл закрывшиеся было глаза.
– Нет спокоя, проклятые! – проворчал он с гневом на кого то. «Да, да, еще что то важное было, очень что то важное я приберег себе на ночь в постели. Задвижки? Нет, про это сказал. Нет, что то такое, что то в гостиной было. Княжна Марья что то врала. Десаль что то – дурак этот – говорил. В кармане что то – не вспомню».
– Тишка! Об чем за обедом говорили?
– Об князе, Михайле…
– Молчи, молчи. – Князь захлопал рукой по столу. – Да! Знаю, письмо князя Андрея. Княжна Марья читала. Десаль что то про Витебск говорил. Теперь прочту.
Он велел достать письмо из кармана и придвинуть к кровати столик с лимонадом и витушкой – восковой свечкой и, надев очки, стал читать. Тут только в тишине ночи, при слабом свете из под зеленого колпака, он, прочтя письмо, в первый раз на мгновение понял его значение.
«Французы в Витебске, через четыре перехода они могут быть у Смоленска; может, они уже там».
– Тишка! – Тихон вскочил. – Нет, не надо, не надо! – прокричал он.
Он спрятал письмо под подсвечник и закрыл глаза. И ему представился Дунай, светлый полдень, камыши, русский лагерь, и он входит, он, молодой генерал, без одной морщины на лице, бодрый, веселый, румяный, в расписной шатер Потемкина, и жгучее чувство зависти к любимцу, столь же сильное, как и тогда, волнует его. И он вспоминает все те слова, которые сказаны были тогда при первом Свидании с Потемкиным. И ему представляется с желтизною в жирном лице невысокая, толстая женщина – матушка императрица, ее улыбки, слова, когда она в первый раз, обласкав, приняла его, и вспоминается ее же лицо на катафалке и то столкновение с Зубовым, которое было тогда при ее гробе за право подходить к ее руке.
«Ах, скорее, скорее вернуться к тому времени, и чтобы теперешнее все кончилось поскорее, поскорее, чтобы оставили они меня в покое!»

Лысые Горы, именье князя Николая Андреича Болконского, находились в шестидесяти верстах от Смоленска, позади его, и в трех верстах от Московской дороги.
В тот же вечер, как князь отдавал приказания Алпатычу, Десаль, потребовав у княжны Марьи свидания, сообщил ей, что так как князь не совсем здоров и не принимает никаких мер для своей безопасности, а по письму князя Андрея видно, что пребывание в Лысых Горах небезопасно, то он почтительно советует ей самой написать с Алпатычем письмо к начальнику губернии в Смоленск с просьбой уведомить ее о положении дел и о мере опасности, которой подвергаются Лысые Горы. Десаль написал для княжны Марьи письмо к губернатору, которое она подписала, и письмо это было отдано Алпатычу с приказанием подать его губернатору и, в случае опасности, возвратиться как можно скорее.
Получив все приказания, Алпатыч, провожаемый домашними, в белой пуховой шляпе (княжеский подарок), с палкой, так же как князь, вышел садиться в кожаную кибиточку, заложенную тройкой сытых саврасых.
Колокольчик был подвязан, и бубенчики заложены бумажками. Князь никому не позволял в Лысых Горах ездить с колокольчиком. Но Алпатыч любил колокольчики и бубенчики в дальней дороге. Придворные Алпатыча, земский, конторщик, кухарка – черная, белая, две старухи, мальчик казачок, кучера и разные дворовые провожали его.

Люди иногда говорят, что в действительности бейсбольный мяч по дуге не летит, что это всего лишь оптический обман. Бейсболисты и ученые знают, что это не так. Подающий высшей лиги может заставить мяч отклоняться в сторону, вниз или вверх во время его полета в «дом». Траектория подачи определяется тем, какую скорость и направление вращения придаст мячу рука подающего. В соответствии с законами физики любое тело, похожее на движущийся в воздухе бейсбольный мяч, подвергается воздействию нескольких физических сил, совместное влияние которых и определяет траекторию его полета.

Бейсбольный мяч сшит красной ниткой, которая во время сшивания образует 216 стежков. При полете вращающегося мяча стежки вовлекают в круговое движение прилегающий к ним слой воздуха. В результате набегающий воздух движется быстрее там, где его направление совпадает с направлением вращения мяча. Чем быстрее движется воздух, тем меньшее давление он создает. Поэтому давление воздуха на стороне мяча, вращающейся в направлении движения набегающего потока, становится меньшим, чем на его противоположной стороне, вращающейся против потока. Аналогично тому как атмосферные воздушные массы движутся в сторону уменьшения давления, бейсбольный мяч отклоняется в направлении подкрутки, т. е. в ту сторону, с которой находится его боковая поверхность с более низким давлением. Мяч, поданный игроком высшей лиги, за полсекунды своего полета в «дом» совершает около 18 оборотов и может отклониться в сторону почти на 45 сантиметров.

Вращение и эффект Магнуса

Когда мяч летит, он испытывает лобовое сопротивление воздуха. На стороне мяча, вращающейся в направлении движения набегающего потока, это сопротивление меньше. Такой дисбаланс создает силу, направленную под прямым углом к направлению полета мяча. Известная под названием эффекта Магнуса, эта сила пропорциональна скорости вращения, скорости полета и лобовому сопротивлению.

"Дуговой" мяч

Подающий бросает «дуговой» мяч, подкручивая его запястьем, чтобы заставить мяч вращаться. Поданный правшой, такой мяч вращается вниз и влево (против часовой стрелки, если смотреть на мяч сверху) и в результате летит в нижний правый угол «дома». Так как набегающий поток воздуха движется быстрее на стороне мяча, вращающейся в направлении потока, мяч отклоняется влево и вниз.

"Винтовой" мяч

«Винтовой» мяч бросают, выгибая запястье в сторону тела, а не от него, как в случае «дугового» мяча. Такой изгиб запястья придает мячу направление вращения, противоположное «дуговому», и заставляет отклоняться мяч вверх и вправо. Поданный правшой «винтовой» мяч летит в правый верхний угол «дома».

"Быстрый" мяч

Хорошо поданный «быстрый» мяч - это не обычная прямая подача, а один из видов специальной подкрутки. При подаче «быстрого» мяча подающий подкручивает его так, чтобы мяч вращался назад, и в результате под действием эффекта Магнуса мяч отклоняется вверх. «Быстрый» мяч, летящий со скоростью 150 километров в час, может отклониться вверх почти на 10 сантиметров.

Подкрутка мяча

Различие между «быстрым», «дуговым» и «винтовым» мячами заключается в скорости и направлении вращения мяча. Эффект Магнуса заставляет мяч отклоняться в направлении своего вращения. Машина для подачи мячей придает им разные виды подкрутки, изменяя скорости вращения двух эжекторных колес. Подающий делает это, изменяя хват мяча.

Продолжая разговор о гидравлических и аэродинамических эффектах, следует особое внимание обратить на эффект, носящий имя известного немецкого учёного Генриха Магнуса, который в 1853 году предложил физическое объяснение искрив­ления траекто­рии полёта пушечного ядра, вызванное его случайным вращением. Полёт вращающегося ядра во многом подобен полёту подкрученного мяча в футболе или в теннисе. Вращение шара в полёте создаёт аэродинамическую силу, отклоняющую шар от прямой траектории полёта. Об этом удивительном аэродина­мическом эффекте писал ещё сэр Ньютон, коммен­тируя резанные удары в теннисе.

Обычно, центр тяжести пушечного ядра не совпадает с его геометрическим центром, что и вызывает небольшое закручивание снаряда при выстреле. Произвольное положение центра тяжести ядра перед выстрелом приводило к столь же произвольному отклонению траектории полёта ядра. Зная об этом недостатке, артиллеристы окунали ядра в ртуть и затем маркировали их по верхней точке плавучести. Промаркированные ядра назывались калибровочными.

При стрельбе калибровочными ядрами обнаружили, что в том случае, когда ядро закладывалось в орудие смещённым центром тяжести вниз получался “недолет”. Если же ядро закладывали центром тяжести вверх, то получался “перелет”. Соответственно, если центр тяжести располагался вправо, при полёте снаряда получалось отклонения вправо, при левом расположении центра тяжести снаряда - отклонение наблюдалось влево. У прусских канониров имелись специальные инструкции для стрельбы калибровочными ядрами.

В дальнейшем додумались изготавливать ядра с заведомо смещённым центром тяжести. Такие снаряды назывались эксцентрическими, и уже с 1830 года они стали применяться в войсках Пруссии и Саксонии. Правильно размещая эксцентрическое ядро в казённой части пушки, можно было до полутора раз увеличить дальность выстрела, не меняя положение ствола. Интересно, что учёные не имели к этому артиллерийскому новшеству никакого отношения.

Однако, просвещённый XIX век требовал “научного объяснения” всякого непонятного явления. И вот, прусские артиллеристы обратились к одному из признанных авторитетов зарождающейся аэродинамики – Генриху Магнусу за разъяснением криволинейной траектории полёта пушечного ядра.

Магнус предположил, что дело не в смещённом центре тяжести ядра, как таковом. Причину он видел во вращении ядра. Для проверки своей гипотезы, Магнус провёл серию лабораторных опытов с принудительным обдувом вращающегося тела, которым была не сфера, а цилиндры и конусы. Аэродинамическая сила, возникающая на цилиндре, действовала в том же направлении, что и сила, отклоняющая вращающееся ядро.

Таким образом, Магнус первым из физиков в лабораторных условиях наглядно промоделировал и подтвердил удивляющий всех эффект отклонения пушечного ядра от прямого полёта. К сожалению, никаких количественных измерений, в ходе своих аэродинамических опытов, Магнус не проводил, а лишь зафиксировал возникновение отклоняющей силы и совпадение её направления с тем, которое имело место в артиллерийской практике.

Строго говоря, Магнус не совсем точно смоделировал явление полёта закрученного ядра. В его экспериментах вращающийся цилиндр принудительно обдувался боковой струёй воздуха. В то время, как в реальной артиллерийской практике, ядро летит в неподвижном воздухе. В соответствие с теоремой Бернулли, давление воздуха в струе понижается пропорционально квадрату её скорости. В случае же движения тела в неподвижном воздухе, никакой реальной скорости струи нет, следовательно, и падения воздушного давления ожидать не приходится.

Кроме того, в опытах Магнуса фиксировалась сила, действующая на цилиндр строго перпендикулярно набегающей струе. В реальности же, вращение цилиндра или шара увеличивает также и силу лобового сопротивления, что оказывает существенное влияние на траекторию полёта снаряда.

Другими словами, сила Магнуса действует не строго перпендикулярно траектории полёта, а под некоторым углом, который Магнус исследовать не стал.

Во времена Магнуса среди физиков ещё не было представления об идентичности физических явлений, свойственных реальному полёту твёрдого тела и явлений, возникающих при набегании ветра на неподвижное тело. Поэтому пионеры аэроди­намики, проводили свои первые опыты, сбрасывая модели с большой высоты, имитируя, тем самым, эффект реального полёта. Например, Эйфель активно использовал в аэродинамических опытах свою башню.

И только спустя много лет неожиданно выяснилось, что аэродинамические силы, возникающие при взаимодействии твёрдого тела с потоком жидкости или газа, почти идентичны, как при набегании потока на неподвижное тело, так и при движении тела в неподвижной среде. И, хотя эта идентичность невольно ставила под сомнение теорему Бернулли, справедливую для струйного течения с реальным скоростным напором, никто из аэродинамиков не стал копать глубже, поскольку формула Бернулли позволяла одинаково успешно предсказывать результаты обтекания тела, независимо от того, что реально движется – поток или твёрдое тело.

Людвиг Прандтль в своей Геттингенской лаборатории в начале XX века первым из учёных проделал серьёзное лабораторное исследование силы Магнуса, с замерами сил и скоростей.

В первой серии экспериментов скорость вращения цилиндра была невелика, поэтому ничего нового эти опыты не принесли, они лишь подтвердили качественные выводы Магнуса. Самое интересное началось в опытах с обдувом быстро вращающегося цилиндра, когда окружная скорость поверхности цилиндра в несколько раз превышала скорость набегающего воздушного потока.

Вот здесь и было впервые обнаружено аномально высокое значение отклоняющей силы, действующей на вращающийся цилиндр.

При пятикратном превышении окружной скорости вращения над скоростью потока, аэродинамическая сила на вращающемся цилиндре, в пересчёте на квадратный метр сечения цилиндра, оказалась в десять раз больше аэродинамической силы, действующей на крыло с хорошим аэродинамическим профилем.

Другими словами, сила тяги, на вращающемся роторе оказалась на порядок выше подъёмной силы самолётного крыла!

Невероятно большую аэродинамическую силу, возникающую при обтекании вращаю­щегося цилиндра, Прандтль пытался объяснить на основе теоремы Бернулли, по ко­торой давление в потоке жидкости или газа резко падает при увеличении скорости потока. Однако, такое объяснение мало убедительно, поскольку многочисленные аэро­динамические опыты наглядно доказали, что падение давления на обтекаемой поверхности зависит от относительной скорости обтекания, а не от скорости потока.

При встречном вращении цилиндра относительно потока – относительная скорость обтекания растёт, следовательно, разрежение должно быть максимальным. При попутном вращении относительно потока – относительная скорость обтекания падает, следовательно, разрежение должно быть минимальным.

В реальности всё происходит с точностью до наоборот: в зоне попутного вращения разрежение максимально, а в зоне встречного вращения разрежение минимально.

Так за счёт чего же образуется тяга при обдуве вращающегося цилиндра?

Когда Магнус исследовал вращающийся цилиндр без бокового обдува, он заметил, что вблизи поверхности цилиндра наблюдается падение давления: пламя свечи, поставленной рядом с цилиндром, прижимается к поверхности цилиндра.

Под действием сил инерции, пристеночный слой воздуха стремится оторваться от вращающейся поверхности, создавая в зоне отрыва разрежение.

То есть, разрежение является следствием не самой по себе скорости струи, как это утверждает теорема Бернулли, а следствием криволинейной траектории струи.

При боковом обдуве ротора, в той зоне, где набегающий поток совпадает по направлению с движением пристеночного слоя, имеет место дополнительная раскрутка воздушного вихря и, отсюда, увеличение глубины разрежения.

Напротив, в зоне встречного движения бокового потока, относительно пристеночного слоя, наблюдается замедление вращения вихря и снижение глубины разрежения. Неодинаковость глубины разрежения по зонам ротора приводит к появлению результирующей боковой силы (силы Магнуса). Тем не менее, разрежение присутствует на всей поверхности ротора.

Пожалуй, самое важное следствие опытов Прандтля – возможность использования аномально большой силы на вращающемся роторе для движения корабля. Правда, эта идея пришла в голову не самому Прандтлю, а его соотечественнику – инженеру Антону Флеттнеру, о котором мы поговорим отдельно на следующих страницах.

Игорь Юрьевич Куликов


Нина Николаевна Андреева поможет оформить
патент на ваше изобретение



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!