Упражнения. Питание. Диеты. Тренировки. Спорт

Объем и сила мышц: почему некоторые люди — сильнее, а некоторые – объемнее. Сила мышц

Все, кто любит спорт, знают, конечно, имя замечательного советского спортсмена, рекордсмена мира по прыжкам в длину Игоря Тер-Ованесяна . Но не всем, вероятно, известно, что однажды, после неудачного падения во время лыжной тренировки, Игорь услышал от врачей:

– Вы больше не спортсмен, молодой человек.

Нет, нога не была сломана, но частично были повреждены мышечные и нервные волокна, наступила атрофия мышц – уменьшение ее в размерах, ослабление, что бывает при длительном бездействии или нарушении питания мышцы.

Приговор был тяжелым, но… через два с половиной года Игорь установил новый рекорд мира. Как же это могло произойти? «Чудо» сотворил спорт.

Сам спортсмен, уезжая домой, говорил друзьям:

— Буду потихоньку тренироваться. Я верю в поистине чудодейственную силу физических упражнений – они еще никого никогда не подводили.

И вот «чудо» произошло. В июне 1962 года на соревнованиях в Ереване Игорь Тер-Ованесян прыгнул на 8 метров 31 сантиметр. А совсем недавно, в октябре 1967 года, на предолимпийских соревнованиях в Мехико Игорь довел рекорд Европы в прыжках в длину до 8 метров 35 сантиметров. Это повторение мирового рекорда американского спортсмена Ральфа Бостона .

Сила мышц человека

«Мышечное сокращение – это одно из удивительных явлений в живом мире. Поистине чудо, что мягкий студень может внезапно становиться твердым, изменять свою форму и поднимать груз, вес которого в тысячу раз выше его собственного, да притом еще делать это не один раз. Мышца, без сомнения, один из интереснейших экспонатов в богатом музее природы ». Эти слова принадлежат известному венгерскому ученому Сент-Дьёрди.

Каждый знает, что даже самое простое движение осуществляется при участии многих мышц. Одни обеспечивают основное движение, другие – плавность и соразмерность движений.

Они позволяют человеку осуществлять бесконечное многообразие движений с различной силой сокращений. Ведь иногда надо поднять с пола спичку, а иногда тяжелую гирю.

От чего же зависит сила мышечного сокращения ? Все от тех же нервных импульсов, о которых мы уже говорили.

Вообще в организме мышцы никогда не бывают вполне расслабленными. Это постоянное их напряжение называется тонусом (от греческого слова «тонос» – напряжение). Интересно, что мышечный тонус сохраняется без всякой затраты энергии. Это и понятно: ведь энергию приходится затрачивать тогда, когда нужно выполнить какую-то работу.

Вот простой пример. На стене висит картина. Казалось бы, что гвоздь, на котором она держится, многие годы верно выполняет свою службу. А ведь с точки зрения физики он «безработный», так как никакой видимой энергии при этом не затрачивает.

Но почему же человек устает, если неподвижно сидит или несет тяжесть, скажем, под уклон? Ведь кастрюля, стоящая на столе, «не устает», даже если она наполнена водой.

Конечно, любому школьнику понятно, что стоящий человек по сравнению с любым неодушевленным предметом непрерывно работает – он должен поддерживать равновесие. Идущий человек работает еще энергичнее – ему с каждым шагом приходится поднимать тяжесть собственного тела. И энергия эта буквально «уходит в землю»: она передается почве, вызывая ее сотрясение. Чем больше весит тело человека и груз, который он несет, тем больше расходуется энергии.

Энергия, энергетические процессы … Те, что происходят в живом организме, очень сложны. Найти для этих процессов какое-либо подобие в технике пока нельзя. Ни одна тепловая машина не работает так экономно и не имеет такого высокого коэффициента полезного действия, как живая мышца. КПД мышцы приближается к 50 процентам, тогда, как, например, у паровых машин он почти в 10 раз ниже – 5–7 процентов.

Наши мышцы обладают и еще одним ценным качеством – они могут работать «в долг», за счет собственных энергетических запасов.

Кто бегал стометровку, тот знает: за те 10–14 секунд можно успеть сделать всего один-два вдоха. Да и кровь за этот короткий промежуток времени, конечно, не успеет доставить мышцам нужное им количество кислорода. Для этого ей пришлось бы протекать по кровеносным сосудам в десятки раз быстрее, чем обычно.

Но вот спринтер у финиша, он еще бежит несколько метров, потом идет шагом, останавливается. Теперь он дышит часто и глубоко, сердце его бьется значительно быстрее и с каждым ударом выбрасывает в сосуды намного больше крови , чем до старта.

Конечно, мышца не может работать «в долг» неограниченное время. Наступает момент, когда ее энергетические запасы истощаются – мышца устает. И этому есть характерные примеры.

Кто видел когда-нибудь на стадионе бег на 400 метров? Это зрелище очень хорошо иллюстрирует умение наших мышц работать «в кредит».

Сначала бегуны несутся как настоящие спринтеры; в таком темпе они пробегают первые 200 метров. Может быть, удается пробежать и еще 100 метров в том же темпе. Но картина бега резко меняется: как будто тяжелый груз придавливает спортсменов к земле, причем всех почти одновременно. Кажется, что бегут они, как говорится, только волей, «на нервах».

«Скисли!» – презрительно заметит иной неопытный болельщик или случайный зритель. Но ведь это совсем не так. И если кто хоть раз, пробегая эту дистанцию, испытал на себе ни с чем не сравнимое чувство свинцовой тяжести вблизи трехсотметровой отметки, тот никогда так не скажет.

Почему мышцы устают?

Первые две стометровки мышцы бурно расходуют энергию, и подходит момент, когда запасы ее истощились, а переработанные вещества – продукты обмена, ненужные организму (например, так называемая молочная кислота – один из конечных продуктов распада гликогена – животного крахмала),– не успели удалиться.

В это время спортсмен как раз и ощущает сильное мышечное утомление, и бег намного замедляется: мышцы, использовав все оставшиеся запасы энергии и питания, работают практически без доставки кислорода. Но вот кровь начинает циркулировать быстрее, дыхание и сердцебиение учащаются. Мышцы снова начинают получать достаточное количество кислорода. Сила мышц вновь возрастает.

Такого тяжелого перелома не бывает, если спортсмен бежит на длинную дистанцию. У стайера утомление накапливается постепенно, но тоже иногда достигает такой степени, что впору сходить с беговой дорожки. Так иногда и поступают новички. Если же силы воли и опыта хватает и бег продолжается, то бегун вдруг ощущает прилив новых сил. Спортсмены образно назвали его «вторым дыханием ». Это значит, что мышцы, как и весь организм, приспособились к новому ритму работы.

И, наконец, мышцы обладают еще одним важным свойством – способностью к тренировке .

Мышечная сила

Под силой понимается способность человека преодолевать внешнее сопротивление или противодействовать ему за счет мышечных усилий. Один из наиболее существенных моментов, определяющих мышечную силу - это режим работы мышц. При существовании лишь двух реакций мышц на раздражение - сокращения с уменьшением длины и изометрического напряжения, результаты проявленного усилия оказываются различными в зависимости от того, в каком режиме мышцы работают. В процессе выполнения спортивных или профессиональных приемов и действий человек может поднимать, опускать или удерживать тяжелые грузы.

Мышцы, обеспечивающие эти движения, работают в различных режимах. Если, преодолевая какое-либо сопротивление, мышцы сокращаются и укорачиваются, то такая их работа называется преодолевающей (концентрической). Мышцы, противодействующие какому-либо сопротивлению, могут при напряжении, и удлиняться, например, удерживая очень тяжелый груз. В таком случае их работа называется уступающей (эксцентрической). Преодолевающий и уступающий режимы работы мышц объединяются названием динамического.

Сокращение мышцы при постоянном напряжении или внешней нагрузке называется изотоническим. При изотоническом сокращении мышцы, от предъявляемой нагрузки зависит не только величина ее укорочения, но и скорость: чем меньше нагрузка, тем больше скорость ее укорочения. Данный режим работы мышц имеет место в силовых упражнениях с преодолением внешнего отягощения (штанги, гантелей, гирь, отягощения на блочном устройстве). Величина прикладываемой к снаряду силы при выполнении упражнения в изотоническом режиме изменяется по ходу траектории движений, так как изменяются рычаги приложения силы в различных фазах движений. Упражнения со штангой или другим аналогичным снарядом с высокой скоростью не дают необходимого эффекта, так как предельные мышечные усилия в начале рабочих движений придают снаряду ускорение, а дальнейшая работа по ходу движения в значительной мере выполняется по инерции. Поэтому, упражнения со штангой и подобными снарядами малопригодны для развития скоростной (динамической) силы. Упражнения с этими снарядами применяются в основном для развития максимальной силы и наращивания мышечной массы, выполняются равномерно в медленном и среднем темпе. Однако, указанные недостатки силовых упражнений со штангой, гантелями, гирями и т. п. с лихвой компенсируются простотой, доступностью и разнообразием упражнений. мышечный штанга сила

В последние годы в мировой практике разработаны и широко применяются тренажеры специальных конструкций, при работе на которых задается не величина отягощения, а скорость перемещения звеньев тела. Такие тренажеры позволяют выполнять движения в очень широком диапазоне скоростей, проявлять максимальные и близкие к ним усилия практически на любом участке траектории движения. Режим работы мышц на тренажерах такого типа называется изокинетическим. При этом мышцы имеют возможность работы с оптимальной нагрузкой по ходу всей траектории движения. Изокинетические тренажеры широко применяются пловцами, а также в общефизической подготовке. Многие специалисты высказывают мнение о том, что силовые упражнения на тренажерах с данным режимом работы мышц должны стать основным средством силовой подготовки при развитии максимальной и "взрывной" силы. Выполнение силовых упражнений с высокой угловой скоростью движений более эффективно, по сравнению с традиционными средствами, при решении задач развития силы без значительного прироста мышечной массы, необходимости снижения количества жира, для развития скоростно-силовых качеств.

В подготовке спортсменов и в атлетических клубах широкое распространение получили также тренажеры типа "Наутилиус" с изменяющимся по ходу движения (переменным) сопротивлением. Такой эффект достигается применением в их конструкции эксцентриков и рычагов. Тренажеры этого типа в значительной мере компенсируют недостатки силовых упражнений с изотоническим режимом работы мышц, изменяя за счет конструктивных особенностей динамику мышечной тяги. Преимущество этих тренажеров заключается в том, что они позволяют регламентировать выполнение упражнений с большой амплитудой, максимально напрягать мышцы в уступающей фазе движений, совмещать развитие силы и гибкости мышц. Недостатками их являются сложность в изготовлении и громоздкость, возможность выполнения на одном тренажере только одного упражнения. Переменный режим работы мышц имеет место также и при использовании силовых упражнений с амортизаторами и эспандерами.

Выполняя движения, человек очень часто проявляет силу и без изменения длины мышц. Такой режим их работы называется изометрическим, или статическим, при котором мышцы проявляют свою максимальную силу. В целом для организма изометрический режим оказывается самым неблагоприятным в связи с тем, что возбуждение нервных центров, испытывающих очень высокую нагрузку, быстро сменяется тормозным охранительным процессом, а напряженные мышцы, сдавливая сосуды, препятствуют нормальному кровоснабжению, и работоспособность быстро падает. При насильственном увеличении длины мышц в уступающих движениях сила может значительно (до 50-100%) превосходить максимальную изометрическую силу человека. Это может проявляться, например, во время приземления с относительно большой высоты, в амортизационной фазе отталкивания в прыжках, в быстрых движениях, когда необходимо погасить кинетическую энергию движущегося звена тела и т. д. Сила, развиваемая в уступающем режиме работы в разных движениях, зависит от скорости; чем больше скорость, тем больше и сила.

Меньшую силу, чем в статическом и уступающем режимах, мышцы генерируют, сокращаясь в преодолевающем режиме<. Между силой и скоростью сокращения существует обратно пропорциональная зависимость. Важным является и то, что возможные значения силы и скорости при различных отягощениях зависят от величины максимальной силы, проявляемой в изометрических условиях. Ненагруженная мышца (без всяких отягощений и сопротивлений) укорачивается с максимальной скоростью.

Если постепенно наращивать величину отягощения (или сопротивления), то сначала с увеличением этого отягощения (т. е. перемещаемой массы тела) сила до определенного момента возрастает. Однако, попытки дальнейшего повышения отягощения силу не увеличивают. Например, сила, прикладываемая к теннисному мячу при его метании, будет существенно меньше, чем при метании металлического ядра весом 1-2 килограмма. Если же массу метаемого с ускорением снаряда постепенно повышать и далее, то наступает предел, выше которого развиваемая человеком сила уже не будет зависеть от величины перемещаемой им массы, а будет определяться лишь его собственно силовыми возможностями, то есть уровнем максимальной изометрической силы.


Факторы, влияющие на величину силы мышцы:

1) длина мышцы: длинные мышцы сокращаются на большую
величину, чем короткие (укорочение мышцы происходит на 1/3, иногда на

2) количество мышечных волокон (чем большее количество волокон
входит в состав мышцы, тем больше ее сила);

3) толщина мышечных волокон (толстые волокна развивают
большее напряжение, чем тонкие);

4) направления волокон, составляющих мышцу (с косыми волокнами
сила мышцы больше, т.к. у них больше физиологическое поперечное
сечение, большая подъемная сила);

    исходная длина мышцы (эффективнее работает мышца после ее умеренного растяжения);

    величина площади прикрепления мышцы (чем больше площадь прикрепления, тем большую силу может развить мышца);

54 1) плечо силы (чем больше плечо силы мышечной тяги, тем

больше сила мышцы);

8) иннервация (чем большее количество мотонейронов,

иннервирующих данную мышцу, возбуждено, тем больше двигательных

единиц приведено в действие, тем больше величина напряжения или

сокращения мышцы; при учащении нервных импульсов, приходящих к

мышце, ее сократительная сила возрастает).

Различают абсолютную и относительную силу мышц.

Относительная сила мышцы - это отношение ее максимальной силы к анатомическому поперечнику (площади поперечного сечения мышцы, проведенного перпендикулярно ее длине).

Абсолютная сила мышцы - это отношение ее максимальной силы к физиологическому поперечнику (сумме площадей поперечных сечений всех мышечных волокон, образующих мышцу). Рисунок 1.

Рис. 1. Схема анатомического (сплошная линия) и физиологического (прерывистая

линия) поперечников мышц различной формы: / - лентовидная мышца, // - веретенообразная мышца, /// - одноперистая мышца

Для характеристики сократительной способности большое значение

имеет определение абсолютной силы мышцы. Необходимо иметь в виду,

что физиологический поперечник (т.е. площадь поперечного сечения всех

волокон мышцы в целом) часто не совпадает с анатомическим

поперечником (т.е. площадью поперечного сечения мышцы). Это

Статическая

это работа, при которой

мышечные волокна

развивают напряжение,

но практически не

укорачиваются; движения

тела или его частей не

происходит.

1) удерживающая

работа при выполнении данной

работы видимого

действия не наблюдается,

но мышца сокращена;

происходит

уравновешивание

действия сопротивления,

моменты силы тяги

55
совпадение есть только у параллельноволокнистых и

веретенообразных мышц, построенных из длинных мышечных волокон. У

перистых мышц, по типу которых постороено большинство скелетных

мышц человека, физиологический поперечник несколько больше

анатомического. Благодаря этому перистые мышцы являются более

сильными, чем параллельноволокнистые или веретенообразные.

Абсолютная сила мышц человека выражается в среднем следующими

величинами (в килограммах на 1 см 2): икроножная + камбаловидная -

6,24; разгибатели шеи - 9,0; жевательные - 10,0; двуглавая плеча - 11,4;

плечевая - 12,1; трехглавая плеча - 16,8.

Между силой и скоростью сокращения мышцы существует

определенное соотношение: чем выше сила, развиваемая мышцей, тем

меньше скорость ее сокращения, и наоборот, с нарастанием скорости

сокращения падает величина усилия (соотношение сила - скорость, по А.

2. Понятие о мышцах - антагонистах и мышцах-синергистах. Виды работы мышц

Выполнение любого двигательного акта представляет собой результат содружественного действия ряда отдельных мышц, так как на любой сустав действует не одна, а несколько мышц. В функциональном отношении в зависимости от направления усилий, развиваемых теми или иными мышцами, их принято делить на синергисты и антагонисты.

Под синергистами понимают такие мышцы, которые образуют содружественно работающие комплексы, обуславливающие возможность выполнения определенного движения. Например, мышцы живота, работая содружественно, осуществляют наклон туловища.

Отдельные мышцы или группы мышц, участвующие в различных движениях, противоположно направленных, принято называть антагонистами. Например, группа мышц, которая сгибает стопу, является

56 антагонистом по отношению к той группе, которая ее разгибает, т.е.

мышцы, расположенные на задней и на передней поверхностях голени, -

антагонисты.

Деление это условно, т.к. при определенных условиях мышцы-антагонисты могут работать как синергисты. Так, мышцы-сгибатели и мышцы-разгибатели туловища, работая совместно, осуществляют наклон туловища в сторону, т.е. работают как синергисты. Согласованная работа мышц-антагонистов и мыпщ-синергистов обеспечивает плавность движений и предотвращает травмы.

В спортивной практике мышцы выполняют различные виды работ. В одних случаях работа приводит к движению, в других - к удержанию позы, фиксации какого-то положения.

Виды работы мышц

Динамическая

это работа, при которой мышечные волокна

укорачиваются или удлиняются, и происходит

перемещение груза и движение костей в суставах.

^преодолевающая работа

мышцей какого-либо

сопротивления или силы

тяжести данного звена

тела, когда момент силы

тяги мышцы (группы

мышц) больше момента

силы тяжести.



57

Например: на ладонь положили груз, который удерживается на вытянутой руке - это работа удерживающая. Если ладонь с грузом поднимается вверх, то это работа - преодолевающая, если ладонь под действием силы тяжести пошла вниз - уступающая работа.

3. Работа мышц по принципу рычага

Мышцы, сокращаясь, приводят в движение кости и действуют при этом как рычаги.

Рычаг - это всякое твердое тело, закрепленное в одной точке, вокруг которой происходит движение.

Обязательными элементами рычага являются:

    точка опоры;

    точка приложения силы;

    плечо рычага - это расстояние от точки опоры до точки приложения силы;

    плечо силы - это кратчайшее расстояние от точки опоры до линии действия силы (рис. 2).

Рис.2. Схема рычага. Плечи рычага (ОА и ОБ), плечи сил (ОА1 и ОБ1).

Если сила тяжести действует под прямым углом, то плечо силы и плечо рычага совпадают по величине.

Если речь идет о двигательном аппарате человека, то таким твердым телом является кость. Точкой опоры, вокруг которой происходят движения, является сустав. Само движение происходит за счет силы тяги мышц.

Костные рычаги - х это звенья тела, подвижно соединенные в суставах под действием приложенных сил. Они служат для передачи движения и работы на расстояние.

Различают два вида рычагов: первого и второго рода. Если две силы (сила тяжести и сила тяги мышц) приложены по разные стороны от точки опоры рычага и действуют в одном направлении, то тело является рычагом первого рода. Этот рычаг двуплечий, т.к. плечо силы тяжести и силы тяги мышц расположены по обе стороны от точки опоры, образуя соответственно два равных плеча. Такой рычаг является рычагом равновесия.

Примером рычага первого рода является соединение позвоночника с черепом, т.е. атлантозатылочный сустав. Его еще называют суставом равновесия, так как сила тяжести черепа уравновешивается силой тяги мышц затылка (рис.3).

Понятия о мышечной силе.

Сила человека представляет собой его способность справляться с внешним сопротивлением либо противодействовать ему благодаря мышечным усилиям. Если не развивать физическую силу, то и овладеть спортивным мастерством не получится. Ведь она в большей степени определяет быстроту движений, а так же играет огромную роль в работе, которая требует ловкости и выносливости.

Сила мышцы напрямую зависит от сократительной силы ее мышечных волокон, то есть от размера физиологического поперечника, проходящего через все ее волокна и равного площади поперечного сечения (исчисляется в см2).

Большая часть мышц человека имеют перистое строение, то есть их волокна друг к другу расположены под углом. Существуют мышцы, которые имеют параллельное и веретенообразное местоположение волокон. Так, к примеру, протяжные мышцы имеют параллельный ход волокон, а двуглавая мышца бедра наоборот – веретенообразный.

У перистых мышц при такой точно толщине, что и у мышц с веретенообразным и параллельным расположением волокон, больше физиологический поперечник, так как мышечных волокон в нем укладывается больше. Как результат перистая мышца мощнее.

Основная способность перистого строения мышц – это формирование мышечного напряжения. Если они проигрывают в величине укорочения, то в силе сокращения они выигрывают. Мышцам с веретенообразными мышцами и параллельными волокнами в большей степени характерно значительные трансформации длинны, что обеспечивает в различных суставах более выраженные движения.

Мышцы отличаются также и по анатомическому поперечнику, так называемому поперечному сечению, которое перпендикулярно к длине мышцы не учитывая особенностей расположения в ней волокон. Поэтому чем анатомический поперечник больше, тем толще мышца, тем она может развивать большую силу. При равных прочных условиях сила соразмерна поперечному сечению мышцы, а высота сокращения – соразмерна длине мышечных волокон.

Например, одиночная двигательная единица, которая состоит из 100 волокон, способна развивать силу в 10-20 г. Большая часть скелетных мышц обладает силой, которая превышает вес тела. Все человеческие мышцы содержат порядка 300 млн. волокон. Поэтому если бы они функционировали в одну сторону, то способны били бы развить силу, равную 25 тоннам.

На скорость сократительного акта определенное влияние оказывает строение мышц – перистые мышцы являются наиболее «быстрыми».

Быстрая сила мышц является понятием обобщенным и относительным. Сила, которая проявляется в быстрых движениях, обладает множеством качественных оттенков, и порой между ними довольно сложно провести грань. Приблизительно дифференцируя, можно определить две основополагающие группы движений, которые требуют быструю силу: первая, движения, где играет роль преимущественно быстрота перемещения при преодолении сравнительно небольшого сопротивления, вторая, движения, при которых рабочий эффект зависит от быстроты развития двигательного усилия при преодолении существенного сопротивления. Абсолютная сила мышц для выполнения первых движений не имеет существенной роли, а для вторых движений ее величина значима в рабочем эффекте.

Для первой группы различают движения, которые связаны со скоростью реагирования на определенный сигнал извне либо в целом ситуацию, со скоростью однократных отдельных напряжений и с частотой повторяемых напряжений. Во второй группе стоит выделить движения по разновидности напряжения мышц: имеющее изометрическое взрывное напряжение (они связаны с одолением сравнительно большого отягощения и если нужно быстро развить максимальную силу), с баллистическим взрывным напряжением (стремительное преодоление сопротивления, незначительного по весу), и с взрывным реактивным баллистическим напряжением, при котором главное рабочее усилие развивается немедленно после того, как мышцы предварительно растянутся.

Следовательно, проявление быстрой силы очень разнообразно, ее природа довольно специфична, она обнаруживает сравнительно плохой «перенос» при движении и относительно медленный темп развития.

Наибольшая сила мышц достигается либо за счет наибольшего увеличения массы поднимаемого или перемещаемого груза, либо за счет возрастания ускорения, т. е. изменения скорости до максимальной величины. В первом случае увеличивается напряжение мышцы, а во втором - скорость ее сокращения. Движения у человека обычно происходят при сочетании сокращения мышц с их напряжением. Поэтому при возрастании скорости сокращения пропорционально увеличивается и напряжение. Чем больше масса груза, тем меньше сообщаемое ему человеком ускорение.

Максимальная сила мышцы измеряется определением массы максимального груза, который она может сместить. При таких изометрических условиях мышца почти не сокращается, а ее напряжение является предельным. Следовательно, степень напряжения мышцы - выражение ее силы.

Силовые движения характеризуются максимальным напряжением при увеличении массы груза и неизменной скорости его перемещения.

Сила мышцы не зависит от ее длины, а зависит главным образом от ее толщины, от физиологического поперечника, т. е. от количества мышечных волокон, приходящихся на наибольшую площадь ее поперечного сечения. Физиологическим поперечником называется площадь сечения всех мышечных волокон. У перистых и полуперистых мышц этот поперечник больше анатомического. У веретенообразных и параллельных мышц физиологический поперечник совпадает с анатомическим. Поэтому наиболее сильные перистые мышцы, затем полуперистые, веретенообразные и, наконец, наиболее слабые мышцы с параллельным ходом волокон. Сила мышцы зависит также от ее функционального состояния, от условий ее работы, от предельной частоты и величины, пространственной и временной суммации притекающих к ней нервных импульсов, вызывающих ее сокращение, количества функционирующих нейромоторных единиц и от импульсов, регулирующих . Сила мышц повышается при тренировке, снижается при голодании и утомлении. Вначале она увеличивается с возрастом, а затем к старости уменьшается.

Сила мышцы при максимальном ее напряжении, развиваемая при наибольшем ее возбуждении и наиболее выгодной длине до начала ее напряжения, называется абсолютной .

Абсолютная сила мышцы определяется в килограммах или ньютонах (Н). Максимальное напряжение мышцы у человека вызывается волевым усилием.

Относительная сила мышцы высчитывается следующим образом. Определив абсолютную силу в килограммах или ньютонах, делят ее на число квадратных сантиметров поперечного сечения мышцы. Это позволяет сравнить силу разных мышц одного и того же организма, силу одноименных мышц разных организмов, а также изменения силы одной и той же мышцы данного организма в зависимости от сдвигов ее функционального состояния. Относительная сила скелетной мышцы лягушки 2-3 кг, разгибателя шёи человека - 9 кг, жевательной мышцы - 10 кг, двуглавой мышцы плеча - 11 кг, трехглавой мышцы плеча - 17 кг.

Растяжимость и эластичность

Растяжимостью называется способность мышцы увеличивать длину при действии груза или силы. Растяжение мышцы зависит от массы груза. Чем больше груз, тем больше растягивается мышца. По мере возрастания груза требуется все больший груз или сила для получения одинакового прироста длины. Имеет значение и продолжительность действия груза. При приложении груза или силы в течение 1-2 с происходит удлинение мышцы (быстрая фаза), а затем ее растяжение замедляется и может продолжаться несколько часов (медленная фаза). Растяжимость зависит от функционального состояния мышцы. Красные мышцы растягиваются больше белых. Растяжимость зависит и от типа строения мышцы: параллельные мышцы растягиваются больше перистых.

Скелетные мышцы обладают эластичностью, или упругостью,- способностью возвращаться после деформации в исходное состояние. Эластичность, как и, растяжимость, зависит от функционального состояния, строения мышцы, ее вязкости. Восстановление исходной длины мышцы также происходит в 2 фазы: быстрая фаза продолжается 1-2 с, медленная фаза - десятки минут. Длина мышцы после растяжения, вызванного большим грузом или силой, и после длительного растяжения долго не возвращается к исходной. После кратковременного действия небольших грузов длина мышцы быстрее возвращается к исходной. Таким образом, для эластичности мышцы имеет значение степень и продолжительность ее растяжения. Эластичность мышцы малая, непостоянная и почти совершенная.

Длина анизотропных дисков при сокращении и пассивном растяжении не изменяется. Уменьшение длины мышечного волокна при сокращении и увеличение при его растяжении происходит вследствие изменения длины изотропных дисков. При укорочении волокна до 65% изотропные диски исчезают. Во время изометрического сокращения анизотропные диски укорачиваются, а изотропные удлиняются.

При сокращении увеличивается эластичность изотропных дисков, которые становятся почти в 2 раза длиннее анизотропных. Это предохраняет волокно от разрыва при очень быстром уменьшении длины анизотропных дисков, наступающем при изометрическом сокращении мышцы. Следовательно, растяжимостью обладают только изотропные диски.

Растяжимость увеличивается при утомлении пропорционально возрастанию утомления. Растяжение мышцы вызывает повышение ее обмена веществ и температуры. Гладкие мышцы растягиваются значительно больше, чем скелетные, в несколько раз больше своей первоначальной длины.

Эластичность мышцы уменьшается при контрактурах, при окоченении. В покое эластичность мышцы является свойством миофибрилл, саркоплазмы, сарколеммы и соединительнотканных прослоек, при сокращении - свойством сокращенных миофибрилл.

Растяжение гладких мышц до критического предела может происходить без изменения их напряжения. Это имеет большое физиологическое значение при растяжении гладкой мускулатуры полых органов, в которых при этом не изменяется давление. Например, давление в мочевом пузыре не изменяется при значительном растяжении его мочой.

Работоспособность мышц

Работа мышцы измеряется произведением массы поднятого ею груза на высоту его поднятия или на путь, следовательно, на высоту сокращения мышцы. Универсальной единицей работы, а также количества теплоты, является джоуль (Дж). Работоспособность мышцы изменяется в зависимости от ее физиологического состояния и нагрузки. При увеличении груза работа мышцы вначале увеличивается, а затем после достижения максимального значения уменьшается и доходит до нуля. Начальное увеличение работы при увеличении груза зависит от повышения способности мышцы возбуждаться и от прироста высоты сокращения. Последующее уменьшение работы зависит от понижения сократительной способности мышцы вследствие возрастающего растяжения грузом. Величина работы зависит от количества мышечных волокон и их длины. Чем больше поперечное сечение мышцы, чем она толще, тем больше груз, который она может поднять.

Перистая мышца может поднять большой груз, но так как длина ее волокон меньше длины всей мышцы, то она поднимает груз на сравнительно небольшую высоту. Параллельная мышца может поднять меньший груз, чем перистая, так как ее поперечное сечение меньше, но высота подъема груза больше, так как длина ее мышечных волокон больше. При условии возбуждения всех мышечных волокон высота сокращения мышц при прочих равных условиях тем больше, чем волокна длиннее. На величину работы влияет растяжение мышечных волокон грузом. Первоначальное растяжение небольшими грузами увеличивает высоту сокращения, а растяжение большими грузами уменьшает высоту сокращения мышцы. Работа мышцы зависит также от количества мионевральных аппаратов, от их расположения и от одновременного их возбуждения. При утомлении работа мышцы уменьшается и может прекратиться; высота сокращения мышцы по мере развития утомления понижается, а затем доходит до нуля.

Законы оптимальной нагрузки и оптимального ритма

Так как по мере увеличения груза уменьшается высота сокращения мышцы, то работа, являющаяся произведением груза и высоты, достигает наибольшей величины при некоторых средних нагрузках. Эти средние нагрузки называются оптимальными.

При прочих равных условиях при оптимальных нагрузках мышца сохраняет свою работоспособность наиболее продолжительное время. При оптимальной нагрузке работоспособность мышцы зависит от частоты ритма ее сокращений, т. е. от частоты равномерного чередования сокращений мышцы. Ритм сокращений мышцы при средней нагрузке, при которой сохраняется наиболее продолжительная работоспособность мышцы, называется оптимальным,

У разных мышц оптимальные нагрузки и оптимальный ритм неодинаковы. Они изменяются и у данной мышцы в зависимости от условий работы и ее физиологического состояния.

Оптимальная нагрузка и оптимальный ритм обусловлены прежде всего нервной системой (И. М. Сеченов). Что касается человека, то его умственная и физическая работоспособность определяется социальными условиями труда (орудиями труда, отношением к труду, эмоциями и др.). Оптимальная нагрузка и оптимальный ритм у человека значительно изменяются в зависимости от жизненного опыта, возраста, питания и тренированности.

Динамическая работа и статическое усилие

Работа скелетных мышц, обеспечивающая движения тела и его частей, называется динамической, а напряжение скелетных мышц, обеспечивающее поддержание тела в пространстве и преодоление земного притяжения, называется статическим усилием.

Динамическая работа различается по мощности. Измерителем мощности, или интенсивности, является работа, выполненная в единицу времени. Единица мощности - ватт (вт = 1 Дж/с). Между интенсивностью динамической работы и ее продолжительностью существует закономерное отношение. Чем больше интенсивность работы, тем меньше ее продолжительность. Различают работу малой, умеренной, большой, субмаксимальной и максимальной интенсивности. При динамической работе учитывается скорость, или быстрота движений. Для измерения быстроты движений используются: 1) время двигательной реакции, быстрота реагирования, или латентный период двигательного рефлекса, 2) продолжительность отдельного движения при минимальном напряжении мышц, 3) число движений в единицу времени, т. с. их частота.

Скорость движений зависит от характера и ритма импульсов из центральной нервной системы, от функциональных свойств мышц во время движений, а также от их строения. Способность производить мышечную деятельность определенного вида и интенсивности в течение наибольшего времени обозначается как выносливость. Чем больше выносливость, тем позднее начинается утомление.

Основные виды выносливости: 1) статическая - непрерывное, в течение предельного времени поддерживание напряжения скелетных мышц при постоянной силе давления или удерживании в постоянном положении определенного груза. Предельное время статического усилия тем меньше, чем больше сила давления или величина груза, 2) динамическая - непрерывное выполнение мышечной работы определенной интенсивности в течение предельного времени. Предельное время динамической работы скелетных мышц, зависит от ее мощности. Чем больше мощность, тем короче предельное время динамической выносливости.

Динамическая выносливость в большой степени зависит от повышения работоспособности внутренних органов, особенно сердечнососудистой и дыхательной систем.

Динамическая работа характеризуется также ловкостью.

Ловкость - это способность производить координированные движения с очень большой пространственной точностью и правильностью, быстро и в строго определенные, очень небольшие промежутки времени при внезапной перемене внешних условий.

Статическое усилие состоит в поддержании в течение некоторого времени напряжения мышц, т. е. в удержании веса тела, конечности или груза в неподвижном состоянии. В физическом смысле удерживание груза или тела в неподвижном состоянии не является работой, так как при этом отсутствует движение груза или веса тела. Примерами статических усилий являются неподвижное стояние, вис, упор, неподвижное держание руки, ноги или груза. Продолжительность статического усилия зависит от степени напряжения мышц. Чем меньше величина напряжения мышц, тем оно продолжительнее. При статических усилиях расходуется, как правило, значительно меньше энергии, чем при динамической работе. Расход энергии тем больше, чем тяжелее статическое усилие. Тренировка увеличивает продолжительность статических усилий.

Выносливость к статическим усилиям зависит не от повышения работоспособности внутренних органов, а главным образом от функциональной устойчивости двигательных центров к частоте и силе афферентных импульсов.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!