Упражнения. Питание. Диеты. Тренировки. Спорт

Физиологические свойства сердца. Физиологические свойства сердечной мышцы

КРОВО - И ЛИМФООБРАЩЕНИЕ

Доставка кислорода и питательных веществ к тканям и клет­кам млекопитающих животных и человека, а также выведение продуктов их жизнедеятельности обеспечиваются кровью, цир­кулирующей по замкнутой сердечно-сосудистой системе, состоя­щей из сердца и двух кругов кровообращения: большого и мало­го. Большой круг кровообращения начинается от левого желудоч­ка сердца, из которого артериальная кровь поступает в аорту. Пройдя по артериям, артериолам, капиллярам всех органов, кро­ме легких, она отдает им кислород и питательные вещества, а за­бирает углекислоту и продукты метаболизма. Затем кровь соби­рается в венулы и вены и через верхнюю и нижнюю полые вены поступает в правое предсердие.

Малый крут кровообращения начинается с правого желудоч­ка сердца, откуда венозная кровь направляется в легочную арте­рию. Пройдя через легочные капилляры, кровь освобождается от углекислоты, оксигенируется и уже в качестве артериальной по­ступает через легочные вены в левое предсердие.

Физиология сердца Свойства сердечной мышцы

Сердечная мышца обладает следующими свойствами: 1)автоматией - способностью сердца ритмически сокра­щаться под влиянием импульсов, возникающих в нем самом; 2)воз­будимостью - способностью сердца приходить в состояние воз­буждения под действием раздражителя; 3)проводимостью - спо­собностью сердечной мышцы проводить возбуждение; 4)сократи­мостью - способностью изменять свою форму и величину под дей­ствием раздражителя, а также растягивающей силы или крови.

Автоматия

Субстратом автоматии в сердце является специфическая щечная ткань, илипроводящая система сердца, которая состоит изсинусно-предсердного (синоатриального)(СА) узла, располо­женного в стенке правого предсердия у места впадения в него верхней полой вены,предсердно-желудочкового (атриовентрикулярного)узла, расположенного в межпредсердной перегородке на границе предсердий и желудочков. От атриовентрикулярного узла начинается пучокГиса. Пройдя в толщу межжелудочковой перегородки, он делится на правую и левую ножки, заканчиваю­щиеся конечными разветвлениями -волокнами Пуркинье. Вер­хушка сердца не обладает автоматией, а лишь сократимостью, так как в ней отсутствуют элементы проводящей системы сердца.

В нормальных условиях водителем ритма, или пейсмекером, является синоатриальный узел. Частота разрядов синоатриально­го узла в покое составляет 70в 1минуту. Атриовентрикулярный узел -это водитель ритма второго порядка с частотой 40 - 50в 1 минуту. Он берет на себя роль водителя ритма, если по каким-ли­бо причинам возбуждение от СА не может перейти на предсердия при атриовентрикулярной блокаде или при нарушении проводя­щей системы желудочков. Если поражены все основные водители ритма, то очень редкие импульсы (20имп/с) могут возникать в во­локнах Пуркинье -это водитель ритма 3-го порядка.

Следовательно, существует градиент автоматии сердца, со­гласно которому степень автоматии тем выше, чем ближе распо­ложен данный участок проводящей системы к синусному узлу.

Электрическая активность клеток миокарда и проводящей системы сердца

Потенциал действия кардиомиоцитов начинается с быстрой риверсии мембранного потенциала, составляющего -90мВ и со­здаваемого за счет К + -потенциала, до пика ПД (+30мВ) (рис.11). Этофаза быстрой деполяризации, обусловленная коротким зна­чительным повышением проницаемости дляNa" 1 ", который лави­нообразно устремляется в клетку. Фаза быстрой деполяризации очень короткая и составляет всего 1-2мс. Начальный входNа + быстро инактивируется, однако деполяризация мембраны про­должается за счет активации медленных натрий-кальциевых ка­налов, а вход Са 2+ приводит к развитиюплато ПД - это специ­фическая особенность клеток миокарда. В этот период быстрые натриевые каналы инактивируются и клетка становится абсо­лютно невозбудима. Этофаза абсолютной рефрактерности. Од­новременно происходит активация калиевых каналов, а выходя­щие из клетки ионы К + создаютфазу быстрой реполяризации мембраны.

Ускорение процесса реполяризации происходит за счет за­крытия кальциевых каналов. В конце периода реполяризации по­степенно закрываются калиевые каналы и реактивируются на­триевые. Это приводит к восстановлению возбудимости кардиомиоцита и возникновению относительной рефракторной фазы. Длительность ПД кардиомиоцита составляет 200 - 400мс.

Р
ис.
11. Схемы потенциалов действия различных отделов сердца, кривой сокращения и фаз возбудимости сердечной мышцы: А - схема потенциала действия клетки миокарда (/),кривой сокра­щения (II) и фаз возбудимости (III) сердечной мышцы; 1 -потенциал действия клетки миокарда: / -быстрая деполяризация; 2 -пик, 3 - плато, 4 - быстрая ре поляризация;II - кривая сокращения: а -фаза сокращения,б - фаза расслабления;III - кривая возбудимости: 5 -абсолютная рефракторная фаза, б -отно­сительная рефракторная фаза, 7 -фаза супернормальной возбудимости;Б - схема потенциала действия клетки пейсмекера (синоаурикулярного узла): МДП -максимальный диастолический потенциал; МДД -медлен­ная диастолическая деполяризация

Калий-натриевый насос, создающий потенциал покоя или мембранный потенциал миокардиоцита, может быть инактивирован под действием сердечных гликозидов (препараты наперстян­ки, строфантина), которые приводят также к повышению внутри­клеточной концентрации Na + , снижению интенсивности обмена внутриклеточногоCa 2+ на внеклеточныйNа + , накоплению Ca 2+ в клетке. В результате сократимость миокарда становится больше. Ее можно увеличить и за счет повышения внеклеточной концент­рации Са 2+ и с помощью веществ (адреналин, норадреналин),ус­коряющих вход Са 2+ во время ПД. Если удалить Са 2+ из внешней среды или заблокировать вход Ca 2+ во время ПД с помощью таких веществ -антагонистов кальция, как верапамил, нифедипин и др., то сократимость сердца уменьшается.

Клетки проводящей системы сердца и, в частности, клетки пейсмекера, обладающие автоматией, в отличие от клеток рабо­чего миокарда-кардиомиоцитов могут спонтанно деполяризоваться до критического уровня. В таких клетках за фазой реполяризации следует фаза медленной диастолической деполяриза­ции. (МДД), которая приводит к снижению МП до порогового уровня и возникновению ПД. МДД -это местное, нераспрост­раняющееся возбуждение, в отличие от ПД, который является

распространяющимся возбуждением.

Таким образом, пейсмекерные клетки отличаются от кардиомиоцитов: 1)низким уровнем МП -около 50-70мВ, 2)наличи­ем МДД, 3)близкой к пикообразному потенциалу формой ПД,4)низкой амплитудой ПД - 30-50мВ без явления риверсии (овершута).

Особенности электрической активности пейсмекерных кле­ток обусловлены целым рядом процессов, происходящих на их мембране. Во-первых, эти клетки даже в условиях «покоя» имеют повышенную проницаемость для ионов Na + , что приводит к сни­жению МП. Во-вторых, в период реполяризации на мембране от­крываются только медленные натрий-кальциевые каналы, так как быстрые натриевые каналы из-за низкого МП уже инактивирова-ны. В клетках синоатриального узла в период реполяризации бы­стро инактивируются открытые калиевые каналы, но повышает­ся натриевая проницаемость, на фоне которой и возникает МДД, а затем и ПД. Потенциал действия синоатриального узла распро­страняется на все остальные отделы проводящей системы сердца.

Таким образом, синоатриальный узел навязывает всем «ведо­мым» отделам проводящей системы свой ритм. Если возбуждение не поступает от главного пейсмекера, то «латентные» водители ритма, т.е. клетки сердца, обладающие автоматией, берут на себя функцию нового пейсмекера, в них также зарождается МДД и ПД, а сердце продолжает свою работу.

Материалы для самостоятельной работы студентов

(Составители – ,)

СВОЙСТВА СЕРДЕЧНОЙ МЫШЦЫ

1. Механизмы электрогенеза миокардиальных клеток

Функциональным элементом сердца является мышечное волокно - цепочка из клеток миокарда, соединенных “конец в конец” и заключенных в общую саркоплазматическую оболочку.

Потенциал покоя (ПП) миокардиальных волокон формируется за счет высокой проницаемости поверхностной протоплазматической мембраны миокардиального волокна для катионов калия. Возникновение потенциалов действия (ПД) обусловлено открытием на­триевых потенциалзависимых каналов поверхностной прото­плазма­тической мембраны. Значительный вклад в генерацию ПД миокардиальных волокон вносят потенциалзависимые кальциевые каналы. Возбуждение распространяется по сердцу без декре­мента, механизм распространения - электрический.

Сердечная мышца неоднородна в своем клеточном со­ставе. Различают типичные (сократительные) и атипичные волокна мио­карда. Они различаются по строению, функции и электрической активности..gif" width="503" height="321">

Рис. 2. Схема строения проводящей системы сердца.

вставочных дисках выше, чем в боковых, поэтому по направлению к желудочкам возбуждение движется быстрее, чем поперек предсердий. Тем са­мым достигается сокращение всего миокарда пред­сердий с одномоментным выходом волны возбуждения на атриовентрикулярный узел проводящей системы сердца. Как известно, предсердия отделены от желудочков фиброзной тканью, которая не способна проводить возбуждение. Вместе с тем, в этой преграде есть узкая щель - шириной чуть более 1 мм и длиной 1,5-2 мм, в которой расположен атрио­вентрикулярный узел, проводящий возбуждение из предсердий в желудочки. В местах контакта с типичным миокардом предсердий АТМВ атриовентри­кулярного узла очень тонки, вследствие чего им присуще значительное элек­трическое сопротивление саркоплазмы. В этом одна из причин резкого в 20-50 раз замедления распространения возбужде­ния в атриовентрикулярном узле по сравнению с предсердия­ми. Другая причина заключается в том, что АТМВ в верх­ней части узла имеют не продольное, а поперечное расположение. Следова­тельно, по направлению к желудочкам возбуждение передается через боковые, а не более эффективные торцевые вставочные диски.

Замедленное проведение возбуждения из предсердий в же­лудочки обеспечивает важную для нормальной работы сердца паузу между сокраще­ниями. Ее называют атриовентрикулярной задержкой. Желудочки начинают сокра­щаться примерно через 0,1 с от начала сокращения предсердий. Задержка нужна для того, чтобы кровь, накопленная пред­сердиями в диастолу, полностью перешла в желудочки до того, как они начнут сокращаться, нагнетая ее в аорту.

Из атриовентрикулярного узла возбуждение поступает в пучок Гиса . Там скорость проведения возбуждения возрастает до 2-3 м/c. Увеличение скорости обусловлено утолщением АТМВ и повыше­нием плотности ще­левых контактов во вставочных дисках. Ближе к верхушке сердца от пучка Гиса отходят волокна Пуркинье . Эти атипичные миокардиальные волокна вступают в контакт с ТМВ желудочков. Волокна Пуркинье обладают наибольшим диаметром по сравнению с другими волокнами миокарда. Поэтому скорость проведения возбуждения здесь достигает 4-5 м/с. Воз­буждение с отдельных волокон Пуркинье переходит на огром­ное число ТМВ практически одномоментно, благодаря чему разные участки желудоч­ков сокращаются синфазно.

3. Электромеханическое сопряжение в миокарде

Сокращение миокардиальных волокон, как и волокон скелетных мышц, инициируется потенциалом действия. Тем не менее временные соотноше­ния между параметрами потенциала действия и параметрами сокращения этих мышечных волокон различны. Длитель­ность потенциала действия скелетных мышц составляет несколько миллисе­кунд, и сокращение их начинается после завершения развития потенциала действия. В миокарде потенциал действия и сокращение в значительной степени перекрываются во времени. Потенциал действия клеток миокарда заканчивается пос­ле начала фазы расслабления. Поскольку последующее сокращение может возник­нуть только в результате очередного возбу­ждения, а это возбуждение в свою очередь возможно лишь по окончании периода аб­солютной рефрактерности предшествующе­го потенциала действия, сердечная мышца в отличие от скелетной не может отвечать на частые раздражения суммацией оди­ночных сокращений, или тетанусом . Это свойство миокарда имеет боль­шое значение для реализации нагнетательной функции сердца: с одной стороны - тетаническое сокращение, продолжающееся больше периода изгнания крови, препятствовало бы наполнению сердца, с другой - тетаническое сокращение сердца эквивалентно его остановке.

Невозможность сердечной мышцы давать тетанические сокращения заставило детально проанализировать вопрос о механизмах регуляции силы сердечных сокращений. Как было отмечено, сократимость сердца не может регулироваться путем суммации одиночных сокращений, со­кратимость мио­карда в отличие от ске­летных мышц, не может изменяться путем включения раз­лич­ного числа моторных еди­ниц, так как миокард предста­вляет собой функцио­нальный синцитий, и в каждом его сокращении участвуют все во­локна. Однако, эти несколько невыгодные с физиологической точки зрения особенности компенсируются тем, что в миокарде возможность регуляции сократимости обес­пе­чивается путем направленного изменения процессов возбуждения и электро­механического сопряжения.

Как организован механизм электромеханического сопряжения в миокарде? У человека и у млекопитающих структуры, отвечающие за электроме­ханическое сопряжение в скелетных мыш­цах, в основном, имеются и в волокнах серд­ца. Для мио­карда харак­терна система поперечных трубочек (Т-система); особенно хо­рошо она развита в желудочках, где эти трубочки образуют продольные ответв­ле­ния. Напротив, систе­ма продольных трубочек, служащих внутри­клеточным резервуаром Са2+, в мышце сердца выражена в меньшей степени, чем в скелетных мышцах. Как структурные, так и функциональные особенности миокарда свидетельствуют в пользу тесной взаимо­связи между внутриклеточными депо Са2+ и внеклеточной средой. Ключевым событием в сокращении служит вход в клетку Са2+во время потенциала действия. Значение входного кальциевого тока состоит не толь­ко в том, что он увеличивает длительность потенциала действия и, как следствие, ре­фракторного периода: перемещение Са2+ из наружной среды в клетку создает условия для регуляции силы сокращения, так как чем больше кальция оказывается вблизи актина и миозина, тем сильнее сокращается

Активация" href="/text/category/aktivatciya/" rel="bookmark">активацией сократительного аппарата. Начало сокращения связано с выходом кальция в зону актина и миозина из продольных трубочек в ходе деполяризации мембраны. Кальций, поступающий в кардиомиоцит через кальциевые каналы в фазу плато потенциала действия кардиомиоцита, пополняет запасы кальция в продольных трубочках.

На концентрацию кальция, активирую­щего контрактильный ме­ха­низм, существенно влияет его количество в продольных трубочках, при этом показано, что значительная часть входящего в клетку Са2+ пополняет его запасы, обеспечивая достаточную эффективность очередных сокращений.

Таким образом, потенциал действия влияет на сократимость по меньшей мере двумя путями. 1. Он играет роль пускового механизма, вызывающего сокра­щение путем высвобождения Са2+ преимущественно из внутриклеточных депо. 2. Он пополняет запасы Са2+, создавая благоприятные условия для последующих сокра­щений.

Как выяснилось, целый ряд агентов оказывает значимое влияние на сокращение миокарда, изменяя длительность потенциала действия, что отра­жается на поступлении Са2+ внутрь миокардиоцитов. Например, ацетилхолин, выделяющий в окончаниях блуждающего нерва, уменьшая продолжительность потенциалов действия предсердной мышцы, параллельно усиливая прони­цаемость поверхностной мембраны клеток синоатриального узла для калия, вызывая тем самым их гиперполяризацию и уменьшение входного тока Са2+, вызывает уменьшение частоты и силы сердечных сокращений (отрицательный хронотропный, инотропный, дромотропный эффекты - см. ниже.). Напротив, норадреналин, выделяющийся в окончаниях симпатических нервных волокон, усиливая проницаемость для Са2+ , вызывает повышение частоты и увеличение силы сердечных сокращений (положительный хроно­тропный, инотропный, дромотропный эффекты - см. ниже).

Так назы­ваемый феномен лестницы (нарастание силы сокращений при их возобновлении после временной остановки) также связан с наращиванием внутриклеточной фракции Са2+. Сила сокращения сердца быстро изменяется при изменении содержания Са2+ во внеклеточной жидкости. Удаление Са2+ из внешней среды приводит к полному электро­механическому разобщению. Ряд веществ, блокирующих вход Са2+ во время потенциала действия, оказывает та­кой же эффект, как и удаление Са2+ из внешней среды. К таким веществам отно­сятся двухвалентные катионы (Ni 2+ , Со2+, Mn 2+ ), а также некоторые органические со­единения - антагонисты кальция (верапамил, нифедипин). При повышении внеклеточно­го содержа­ния Са2+ или при действии фармакологических препаратов, увеличивающих вход Са2+ во время развития потенциала действия, сократимость сердца увеличивается. Механизм действия сердечных гликозидов (дигоксин, строфантин) частично связан именно с увеличением внутриклеточной фракции Са2+.

4. Биофизические основы электрокардиографии

Особенности распространения возбуждения по сердцу отобража­ются в элек­трокардиограмме (ЭКГ ), которая имеет харак­терную форму (рис. 4). Элемен­тарной моделью генератора ЭКГ является электрический диполь. При распространении возбуждения по миокарду формируется множество диполей, которые законо­мерно изменяют свои количест­венные характеристики и направление. В каждый момент времени воз­никают новые диполи, исчезают прежние. В результате на поверхности сердечной мышцы создается сложная мозаика распределения электрических потенциалов. Резуль­тирующий диполь­ный момент миокарда, ра­вный векторной сумме отдельных диполей, получил название интегрального электрического вектора сердца (ИЭВС). Ритмичный характер ав­томатизма водителя ритма, а также пере­дача возбуждения посредством электриче­ских синапсов обусловливают синфазность возбуди­тельного процесса в миокардиальных волокнах. Поэтому ИЭВС имеет срав­нительно большую амплитуду прежде всего при деполяризации желудочков, чем соз­­да­ется высокий уровень биопотенциалов, отражающих сердечную деятель­ность даже на поверхности тела. Ежемоментно амплитуда и направление ИЭВС различ­ны. Измеряя их, врач получает сведения о движении волны возбуждения по сердцу, что позволяет ему оценить свойства миокарда и в случае нарушений сердечной деятельности понять их природу.

https://pandia.ru/text/80/111/images/image005_20.jpg" width="306 height=259" height="259">

Рис. 5. Соотношение векторэлектрокардиограммы (А) и электрокардиограммы (Б).

В данном случае фигуры Лиссажу представляют собой траектории движения ИЭВС, описываемые его концом на плоскости, перпендикулярной направлению распространения возбуждения по миокарду. Такое исследование электрической ак­тивности сердца называется векторэлектрокардиоскопией (ВЭКС ). На век­тор­­электрокардио­грамме выделяют обычно три эллипсоподобные фигуры. Самая мелкая из них отображает деполяризацию предсердий, самая крупная - деполя­ризацию желудочкой, средняя - их реполяризацию.

Амплитуду вектора оценивают посредством измерения его проекций на координатные оси. Любое из отведений ЭКГ есть не что иное как проекция интегрального электрического векто­ра сердца на соответствующую координатную ось.

Рис. 6. Схема стандартных электрокардиографических отведений (треугольник Эйнтховена)

В разнообразных способах отведения ЭКГ вопло­щены различные системы координат. Широко распространена координатная система, элемен­том которой является равносторон­ний треуголь­ник (рис. 6). Она пред­ложена основоположни­ком электрокардиографии В. Эйнтховеном и получила название системы стандартных отведений. При ее практической реализации накладывают электроды на левую ногу и обе руки. Первым отведением считают регистрацию разности потенциалов между правой и левой рукой, вторым - между правой рукой и левой ногой, третьим - между левой рукой н левой ногой. Применяются и другие способы отведений ЭКГ, для чего используются иные координатные системы. Вне зависимости от способа отведе­ния ЭКГ ее зубцы отражают электрическую активность сердца в соответствующий момент сердечной де-ятель­ности: зубец Р формируется при возбуждении предсердий, комплекс QRS - при возбуждении желудочков, зубец Т - при их реполяризации. Таким образом, от­клонения от нормы, обнаруживаемые в том или ином элементе ЭКГ, можно адресовать соответствующему отделу сердца.

Важным параметром ЭКГ служат временные интервалы. По ним оценивают скорость распространения возбуждения в каж­дом из отделов проводящей сис­темы сердца. Изменения скоро­сти проведения наблюдаются при повреж­дениях сердечной мышцы. Даже мелкий очаг поражения миокарда (диаметром 5-10 мкм) вызывает задержку в рас­пространении возбуждения на 0,1 мс.

В стандартных отведениях зубец Р имеет амплитуду не бо­лее 0,25 мВ и длительность 0,07-0,10 с. Интервал PQ, отображающий атрио-вентрикулярную задержку, составляет 0,12-0,21 с при частоте сердечных сокращений порядка 70 /мин. Комплекс QRS наблюдается в течение всего времени, пока возбуждение распространяется по желудочкам - от 0,06 до 0,09 с. Зубец Q в трети наблю­дений отсутствует в нормаль­ной ЭКГ, а когда обнаруживается, не превышает 0,25 мВ. Зубец R обладает максимальной амплитудой среди других эле­ментов ЭКГ. Она составляет 0,6-1,6 мВ. Зубец S -часто отсутствует, но иногда достигает 0,6 мВ. Он появляется в тот момент, когда деполяризация охватывает участки желудочков, прилежащие к предсердиям. Основание желудочков возбужда­ется в последнюю очередь. Сегмент S-T при пульсе 65-70 /мин составляет 0,12 с. Длительность зубца Т немного больше - от 0,12 до 0,16 с. Его амплитуда находится в преде­лах 0,25-0,6 мВ.

Зубец Р возникает на ЭКГ примерно за 0,02 с до начала сокращения предсердий, а комплекс QRS - за 0,04 с до начала сокращения желудочков. Сле­довательно, электрические проявления возбужде­ния предше­ствуют меха-ническим.

Имея ряд ЭКГ, по крайней мере, две, снятые в 1 и 3 отведениях, можно синтезировать ИЭВС. В медицинской лите­ратуре его называют электрической осью сердца - отрезок прямой, соединяющий два сечения миокарда, облада-ющих в данный момент наибольшей разностью потенциалов. Направление электри­ческой оси сердца в ходе рас­простра­нения возбуждения по миокарду постоянно изменяется. При­нято определять среднюю электрическую ось сердца. Так назы­вают вектор, который можно построить в промежутке между началом и окончанием деполяризации миокарда желудочков. По расположению средняя электрическая ось близка анатоми­ческой оси сердца. По­строение средней электрической оси дает представление о по­ложении сердца в грудной полости. Отклонения оси вправо или влево служат признаками изменений миокарда соответствую­щего желудочка.

Сердечная мышца, так же как и скелетная, обладает возбудимостью, проводимостью и сократимостью, но эти свойства сердечной мышцы имеют свои особенности. Сердечная мышца сокращается медленно и работает в режиме одиночных сокращений, а не титанических как скелетная. Значение этого легко понять, если вспомнить, что сердце при своей работе перекачивает кровь из вен в артерии и должно наполняться кровью в промежутках между сокращениями.

Если сердце раздражать частыми ударами электрического тока, то оно в отличие от скелетных мышц не приходит в состояние непрерывного сокращения: наблюдаются отдельные более или менее ритмичные сокращения. Это объясняется длительной рефрактерной фазой, присущей сердечной мышце.

Рефрактерной фазой называется период не возбудимости, когда сердце утрачивает способность отвечать возбуждением и сокращением на новое раздражение.

Эта фаза длится весь период систолы желудочка. Если в это время раздражать сердце, то никакого ответа не последует. На раздражение, нанесенное в период диастолы, сердце, не успев расслабиться, отвечает новым внеочередным сокращением-экстрасистолой, после которой следует длительная пауза, называемая компенсаторной.

Сердце обладает автоматизмом. Это значит, что импульсы к сокращению возникают в нем самом, тогда как к скелетным мышцам они приходят по двигательным нервам из центральной нервной системы. Если перерезать все нервы, подходящие к сердцу, или даже отделить его от организма, оно будет длительно ритмически сокращаться.

Электрофизиологическими исследованиями установлено, что в клетках проводящей системы сердца ритмически возникает деполяризация клеточной мембраны, обусловливающая появление возбуждения, которое вызывает сокращение мускулатуры сердца.

Проводящая система сердца

Система, проводящая возбуждение в сердце, состоит из атипичных мышечных волокон, обладающих автоматизмом, и включает синусно-предсердный узел, расположенный в области впадения полых вен, предсердно-желудочковый узел, расположенный в правом предсердии, вблизи его границы с желудочками, и предсердно-желудочковый пучок. Последний, начинаясь от одноименного узла, проходит межпредсердную и межжелудочковую перегородки и делится на две ножки - правую и левую. Ножки опускаются под эндокардом по межжелудочковой перегородке к верхушке сердца, где ветвятся и в виде отдельных волокон - проводящих сердечных миоцитов (волокна Пуркинье) распространяются под эндокардом по всему желудочку.

В сердце здорового человека возбуждение возникает синусно-предсердном узле. Этот узел называют водителем ритма. По пучку атипических мышечных волокон оно распространяется к предсердно-желудочковому узлу, а от него по предсердно-желудочковому пучку - к миокарду желудочков. В предсердно-желудочковом узле скорость проведения возбуждения заметно снижается, поэтому предсердия успевают сократиться прежде, чем начнется систола желудочков. Таким образом, система, проводящая возбуждение, не только рождает импульсы возбуждения в сердце, но и регулирует последовательность сокращений предсердий и желудочков.

Ведущую роль синусно-предсердного узла в автоматизме сердца можно показать в опыте: при местном согревании области узла деятельность сердца ускоряется, а при охлаждении замедляется. Согревание и охлаждение других частей сердца не влияет на частоту его сокращений. После разрушения синусно-предсердного узла деятельность сердца может продолжаться, но в более медленном ритме - 30-40 сокращений в минуту. Водителем ритма становится предсердно-желудочковый узел. Эти данные свидетельствуют о градиенте автоматизма, о том, что автоматизм разных отделов системы, проводящей возбуждение неодинаков.

СТРОЕНИЕ СТЕНКИ СЕРДЦА

Стенка сердца состоит из трех слоев: внутреннего - эндокарда , среднего -миокарда и наружного - эпикарда .

Эндокард выстилает изнутри поверхность камер сердца, он образован особым видом эпителиальной ткани -эндотелием . Эндотелий имеет очень гладкую, блестящую поверхность, что обеспечивает уменьшение трения при движении крови в сердце.

Миокард составляет основную массу стенки сердца.

Он образован поперечно -полосатойсердечной мышечной тканью , волокна которой в свою очередь располагаются в несколько слоев. Миокард предсердий значительно тоньше, чем миокард желудочков. Миокард левого желудочка в три раза толще, чем миокард правого желудочка. Степень развитости миокарда зависит от величины работы, которую выполняют камеры сердца. Миокард предсердий и желудочков разделен слоем соединительной ткани (фиброзное кольцо), что дает возможность поочередного сокращения предсердий и желудочков.

Эпикард - это особая серозная оболочка сердца, образованная соединительной и эпителиальной тканью.

ОКОЛОСЕРДЕЧНАЯ СУМКА (ПЕРИКАРД)

Это своеобразный замкнутый мешок, в который заключено сердце. Сумка состоит из двух листков. Внутренний листок срастается по всей поверхности с эпикардом. Наружный листок как бы покрывает сверху внутренний листок. Между внутренним и наружным листком имеется щелевидная полость -перикардиальная полость ), заполненная жидкостью. Сама сумка и жидкость, находящаяся в ней, выполняют защитную роль и уменьшают трение сердца при его работе. Сумка способствует фиксации сердца в определенном положении.

КЛАПАНЫ СЕРДЦА

Работа клапанов сердца обеспечивает одностороннее движение крови в сердце.

К собственно сердечным клапанам относятся створчатые клапаны , располагающиеся на границе предсердий и желудочков. В правой половине сердца находитсятехстворчатый клапан , в левой -двустворчатый (митральный). Створчатый клапан состоит из трех элементов: 1) створки , имеющей форму купола, и образованной плотной соединительной тканью, 2) сосочковой мышцы, 3) сухожильных нитей , натянутых между створкой и сосочковой мышцей. При сокращении желудочков створчатые клапаны закрывают просвет между предсердием и желудочком. Механизм работы этих клапанов следующий: при повышении давления в желудочках кровь устремляется в предсердия, поднимая створки клапанов, и они смыкаются, перерывая просвет между предсердием и желудочком; створки не выворачиваются в сторону предсердий, т.к. их удерживают сухожильные нити, натягивающиеся за счет сокращения сосочковой мышцы.



На границе желудочков и сосудов, отходящих от них (аорта и легочный ствол), располагаются полулунныеклапаны , состоящие из полулунных заслонок . В названных сосудах по три таких заслонки. Каждая полулунная заслонка имеет форму тонкостенного кармашка, вход в который открыт в сторону сосуда. Когда кровь изгоняется из желудочков, полулунные клапаны прижаты к стенкам сосуда. Во время расслабления желудочков кровь устремляется в обратном направлении, наполняет "кармашки", они отходят от стенок сосуда и смыкаются, перекрывая просвет сосуда, не пропуская кровь в желудочки. Полулунный клапан, располагающийся на границе правого желудочка и легочного ствола, называется пульмональный клапан , на границе левого желудочка и аорты - аортальный клапан.

Функции сердца

Функция сердца состоит в том, что миокард сердца во время сокращения перекачивает кровь из венозного в артериальное сосудистое русло. Источником энергии, необходимой для движения крови по сосудам является работа сердца. Энергия сокращения миокарда сердца преобразуется в давление, сообщаемое порции крови, выталкиваемой из сердца во время сокращения желудочков. Давление крови - это сила, которая расходуется на преодоление силы трения крови о стенки сосудов. Разность давлений в разных участках сосудистого русла - главная причина движения крови. Движение крови в сердечно-сосудистой системе в одном направлении обеспечивается работой сердечных и сосудистых клапанов.

Свойства сердечной мышцы

К основным свойствам сердечной мышцы относятся автоматия, возбудимость, проводимость исократимость .

1. Автоматия - это способность к ритмическому сокращению без всяких внешних воздействий под влиянием импульсов, возникающих в самом сердце. Ярким проявлением этого свойства сердца является способность извлеченного из организма сердца при создании необходимых условий сокращаться в течение часов и даже суток. Природа автоматии до сих пор до конца не выяснена. Но однозначно ясно, что возникновение импульсов связано с деятельностью атипических мышечных волокон , заложенных в некоторых участках миокарда. Внутри атипических мышечных клеток спонтанно генерируются электрические импульсы определенной частоты, распространяющиеся затем по всему миокарду. Первый такой участок находится в области устьев полых вен и называется синусный , или синоатриальныйузел . В атипических волокнах этого узла спонтанно возникают импульсы с частотой 60-80 раз в минуту. Он является главным центром автоматии сердца. Второй участок находится в толще перегородки между предсердиями и желудочками и называется предсердно-желудочковый , или атриовентрикулярный узел . Третий участок - это атипические волокна, составляющие пучок Гиса , лежащий в межжелудочковой перегородке. От пучка Гиса берут начало тонкие волокна атипической ткани - волокна Пуркинье , ветвящиеся в миокарде желудочков. Все участки атипической ткани способны генерировать импульсы, но их частота самая высокая в синусном узле, поэтому его называют водителем ритма первого порядка (пейсмекером первого порядка) , и все другие центры автоматии подчиняются этому ритму.

Совокупность всех уровней атипической мышечной ткани составляют проводящую систему сердца . Благодаря проводящей системе волна возбуждения, возникшая в синусном узле, последовательно распространяется по всему миокарду.

2. Возбудимость сердечной мышцы заключается в том, что под действием различных раздражителей (химических, механических, электрических и др.) сердце способно приходить в состояние возбуждения. В основе процесса возбуждения лежит появление отрицательного электрического потенциала на наружной поверхности мембран клеток, подвергшихся действию раздражителя. Как и в любой возбудимой ткани, мембрана мышечных клеток (миоцитов) поляризована. В покое она снаружи заряжена положительно, изнутри - отрицательно. Разность потенциалов определяется различной концентрацией ионов N а + и К + по обе стороны мембраны. Действие раздражителя увеличивает проницаемость мембраны для ионов К + и Nа + , происходит перестройка мембранного потенциала(калий - натриевый насос ), в результате возникает потенциал действия, распространяющийся и на другие клетки. Таким образом происходит распространение возбуждения по всему сердцу.

Импульсы, возникшие в синусном узле, распространяются по мускулатуре предсердий. Дойдя до атриовентрикулярного узла, волна возбуждения распространяется по пучку Гиса, а затем по волокнам Пуркинье. Благодаря проводящей системе сердца наблюдается последовательное сокращение частей сердца: сначала сокращаются предсердия, затем желудочки (начиная с верхушки сердца волна сокращения распространяется к их основанию). Особенность атриовентрикулярного узла - проведение волны возбуждения только в одном направлении: от предсердий к желудочкам.

3. Сократимость - это способность миокарда сокращаться. Оно основано на способности самих клеток миокарда отвечать на возбуждение сокращением. Это свойство сердечной мышцы определяет способность сердца выполнять механическую работу. Работа сердечной мышцы подчиняется закону "все или ничего" .Суть этого закона состоит в следующем: если на сердечную мышцу наносить раздражающее действие различной силы, мышца отвечает каждый раз максимальным сокращением ("все "). Если сила раздражителя не достигает порогового значения, то сердечная мышца не отвечает сокращением ("ничего ").

ФИЗОЛОГИЧЕСКИЕ СВОЙСТВА СЕРДЦА

Автоматией сердца называется его способность к ритмическому сокращению без внешних раздражений под влиянием импульсов, возникающих в самом органе. Возбуждение в сердце возникает в месте впадения полых вен в правое предсердие, где находится так называемый синоатриальный узел, являющийся главным водителем ритма сердца. Далее возбуждение по предсердиям распространяется до атриовентрикулярного узла, расположенного в меж предсердной перегородке правого предсердия, затем по пучку Гисса, его ножкам и волокнам Пуркинье оно проводится к мускулатуре желудочков.

Автоматия обусловлена изменением мембранных потенциалов в водителе ритма, что связано со сдвигом концентрации ионов калия и натрия по обе стороны деполяризованных клеточных мембран. На характер проявления автоматии влияет содержание солей кальция в миокраде, рН внутренней среды и ее температура, некоторые гормоны.

Возбудимость сердца проявляется в возникновении возбуждения при действии на него электрических, химических, термических и других раздражителей. В основе процесса возбуждения лежит появление отрицательного электрического потенциала в первоначально возбужденном участке, при этом сила раздражителя должна быть не менее пороговой. Сердце реагирует на раздражитель по закону «Все или ничего», т. е. или не отвечает на раздражение, или отвечает сокращением максимальной силы. Однако этот закон проявляется не всегда. Степень сокращения сердечной мышцы зависит не только от силы раздражителя, но и от величины ее предварительного растяжения, а также от температуры и состава питающей ее крови.

Возбудимость миокарда непостоянна. Б начальном периоде возбуждения сердечная мышца невосприимчива к повторным раздражениям, что составляет фазу абсолютной рефрактерности, равную по времени систоле сердца. Вследствие достаточно длительного периода абсолютной рефрактерности сердечная мышца не может сокращаться по типу тетануса, что имеет исключительно важное значение для координации работы предсердий и желудочков.

С началом расслабления возбудимость сердца начинает восстанавливаться и наступает фаза относительной рефрактерности. Поступление в этот момент дополнительного импульса способно вызвать внеочередное сокращение сердца - экстрасистолу. При этом период, следующий за экстрасистолой, длится больше времени, чем обычно, и называется компенсаторной паузой. После фазы относительной рефрактерности наступает период повышенной возбудимости. По времени он совпадает с диастолическим расслаблением и характеризуется тем, что импульсы даже небольшой силы могут вызвать сокращение сердца.

Проводимость сердца обеспечивает распространение возбуждения от клеток водителей ритма по всему миокарду. Проведение возбуждения по сердцу осуществляется электрическим путем. Потенциал действия, возникающий в одной мышечной клетке, является раздражителем для других. Проводимость в разных участках сердца неодинакова и зависит от структурных особенностей миокарда и проводящей системы, толщины миокарда, а также от температуры, уровня гликогена, кислорода и микроэлементов в сердечной мышце.

Сократимость сердечной мышцы обусловливает увеличение напряжения или укорочение ее мышечных волокон при возбуждении. Возбуждение и сокращение являются функциями разных структурных элементов мышечного волокна. Возбуждение - это функция поверхностной клеточной мембраны, а сокращение - функция миофибрилл. Связь между возбуждением и сокращением, сопряжение их деятельности достигается при участии особого образования внутримышечного волокна- саркоплазматического ретикулума.

Сила сокращения сердца прямо пропорциональна длине его мышечных волокон, т. е. степени их растяжения при изменении величины потока венозной крови. Иными словами, чем больше сердце растянуто во время диастолы, тем оно сильнее сокращается во время систолы. Эта особенность сердечной мышцы, установленная О. Франком и Е. Старлингом, получила название закона сердца Франка-Старлинга.

Поставщиками энергии для сокращения сердца служат АТФ и КрФ, восстановление которых осуществляется окислительным и гликолитическим фосфорилированием. При этом предпочтительными являются аэробные реакции.

В процессе возбуждения и сокращения миокарда в нем возникают биотокии сердце становится электрогенератором. Ткани тела, обладая высокой электропроводностью, позволяют регистрировать усиленные электрические потенциалы с различных участков его поверхности. Запись биотоков сердца называется электрокардиографией, а ее кривые- электрокардиограммой, которая впервые была записана в 1902 г В. Эйнтховеном.

Для регистрации ЭКГ у человека применяют 3 стандартных отведения, при этом электроды накладывают на поверхность конечностей: I - правая рука-левая рука, II -правая рука-левая нога, III-левая рука-левая нога. Помимо стандартных применяют однополюсные грудные отведения и усиленные отведения от конечностей.

При анализе ЭКГ определяют величину зубцов в милливольтах и длину интервалов между ними в долях секунды. В каждом сердечном цикле различают зубцы Р, Q, R, S,T. Зубец Р отражает возбуждение предсердий, интервал P-Q - время проведения возбуждения от предсердия к желудочкам. Комплекс зубцов QRS характеризует возбуждение желудочков, а интервал S-T и зубец Т - процессы восстановления в желудочках, т. е. их реполяризацию. Интервал Q-T, называемый электрической систолой, отражает распространение электрических процессов в миокраде, т. е. его возбуждение. Время возбуждения миокарда зависит от продолжительности сердечного цикла, которую удобнее всего определять по интервалу R-R

По показателям ЭКГ можно судить об автоматии, возбудимости, сократимости и проводимости сердечной мышцы. Особенности автоматии сердца проявляются в изменениях частоты и ритма зубцов ЭКГ, характер возбудимости и сократимости - в динамике ритма и высоте зубцов, а особенности проводимости - в продолжительности интервалов.

Ритм работы сердца зависит от возраста, пола, массы тела, тренированности. У молодых здоровых людей частота сердечных сокращений составляет 60-80ударов в 1 минуту. Ч СС менее 60 ударов в 1 мин. называется брадикардией, аболее90-тахикардией. У здоровых людей может наблюдаться синусовая аритмия, при которой разница в продолжительности сердечных циклов в покое составляет 0.2-0.3 с и более. Иногда аритмия связана с фазами дыхания, она обусловлена, преобладающими влияниями блуждающего или симпатического нервов. В этих случаях сердцебиения учащаются при вдохе и урежаются при выдохе.

Безостановочное движение крови по сосудам обусловлено ритмическими сокращениями сердца, которые чередуются с его расслаблением. Сокращение сердечной мышцы называется систолой , а ее расслабление - диастолой . Период, включающий систолу и диастолу, составляет сердечный цикл. Он состоит из трех фаз: систолы предсердий, систолы желудочков и общей диастолы сердца. Длительность сердечного цикла зависит от ЧСС. При сердечном ритме 75 ударов в 1 мин. она составляет 0.8 с, при этом систола предсердия равна 0.1 с, систола желудочков - 0.33 с и общая диастола сердца - 0.37 с.

Левый и правый желудочки при каждом сокращении сердца человека изгоняют соответственно в аорту и легочные артерии примерно 60-80 мл крови; этот объем называется систолическим или ударным объемом крови. Умножив УОК на ЧСС, можно вычислить минутный объем крови, который составляет в среднем 4.5-5 л.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!