Упражнения. Питание. Диеты. Тренировки. Спорт

Структура и функции нервно-мышечного синапса. Строение нервно мышечного синапса

Структурное образование, обеспечивающее переход возбуждения с нервного волокна на иннервируемую им клетку - мышечную, нервную или железистую, получило название синапса .

Электронномикроскопические исследования выявили, что все синапсы как в центральной нервной системе, так и на периферии состоят из трёх основных элементов: пресинаптической мембраны, постсинаптической мембраны и синаптической щели (рис. 161 ).

Рис. 161. Взаимоотношения между нервным волокном, нервным окончанием и скелетным мышечным волокном (схема). 1 - миелинизированное нервное волокно; 2 - нервное окончание с пузырьками медиатора: 3 - постсинаптическая мембрана мышечного волокна; 4 - синаптическая щель; 5 - внесинаптическая мембрана мышечного волокна; 6 - миофибриллы; 7 - саркоплазма; 8 - потенциал действия нервного волокна; 9 - потенциал концевой пластинки (постсинаптический потенциал); 10 - потенциал действии мышечного волокна.

Пресинаптической мембраной называется мембрана, покрывающая нервное окончание. Последнее представляет собой своеобразный нейросекреторный аппарат. Здесь вырабатывается и выделяется медиатор, осуществляющий возбуждающее или тормозное действие на иннервируемую клетку.

В состоянии покоя медиатор содержится в так называемых синаптических пузырьках, отчетливо видимых на электронных микрофотографиях нервных окончаний (см. схему на рис. 161 ). При деполяризации пресинаптической мембраны эти пузырьки лопаются, медиатор освобождается и изливается через мембрану в синаптическую щель. Ширина последней составляет примерно 200-500 Å. Она заполнена межклеточной жидкостью, которая по солевому составу приближается к солевому составу плазмы крови. Медиатор быстро диффундирует через щель, воздействуя на мембрану иннервируемой (мышечной, нервной или железистой) клетки.

Та часть мембраны этой клетки, которая непосредственно граничит с нервным окончанием, называется постсинаптической мембраной (в нервно-мышечном соединении нервное окончание и постсинаптическую мембрану называют часто концевой, или двигательной, пластинкой). Постсинаптическая мембрана по своим свойствам отличается от мембраны, покрывающей остальную часть клетки. Главное отличие состоит в том, что она обладает очень высокой химической чувствительностью к медиатору и невозбудима по отношению к электрическому току.

На взаимодействии медиатора с постсинаптической мембраной и основан механизм сннаптической передачи возбуждения.

Наличие химического звена в механизме этой передачи делает понятным два общих свойства синапсов:

  1. односторонность проведения возбуждения через синапсы (в отличие от двустороннего проведения в нервных волокнах)
  2. наличие синаптической задержки.

Односторонность проведения в нервно-мышечных синапсах связана с тем, что медиатор, выделяющийся нервным окончанием, возбуждает постсинаптическую мембрану мышечного волокна, железистой клетки и нервной клетки. Потенциал же действия, возникающий в мышечном волокне, в нервной или железистой клетке, вследствие наличия синаптической щели не может возбудить нервные окончания и нервные волокна.

Синоптическая задержка, т. е. замедление проведения возбуждения при передаче через синапс, определяется главным образом временем диффузии медиатора от мембраны нервного окончания к мембране мышечного волокна. В нервно-мышечном соединении синаптическая задержка равна примерно 1-3 мсек. В нервных окончаниях в гладкой мышце синаптическая задержка больше, чем в нервных окончаниях в скелетной мышце.

Нервную систему можно разделить на центральную и периферическую.

Главными функциями нервной системы будут являться:

- сенсорная (обеспечивает восприятие раздражений из внешней или внутренней среды, эти раздражения воспринимаются чувствительными окончаниями),

- проводниковая (проведение нервных импульсов в центральную нервную систему или из нее),

- интегративная функция (объединение тех сигналов, которые поступают в организм и выбор наиболее значимого раздражителя в данный момент, на который будет формироваться ответная реакция)

- рефлекторная функция (большинство ответных реакций проявляется в двигательной форме),

- моторная функция , обеспечивающая эти реакции.

Наряду с двигательными реакциями могут присутствовать секреторные реакции. Эти функции связаны с работой нервных клеток.

Нейрон. В нейроне различают тело клетки и 2 вида отростков (короткие ветвящиеся - дендриты. Предназначены для передачи информации к телу клетки. От тела клетки отходит один длинный отросток - аксон. Аксон образует конечные терминали, которые вступают в контакт с органами) . Тело нервной клетки имеет субклеточные структуру. Эндоплазматическая сеть (гладкая и гранулярная). Гранулы на гранулярной сети - рибосомы, где идет синтез белка. Гранулярная сеть является важным показателем состояния нейрона. В нейроне содержатся нейрофиламенты и нейротрубочки . Нейрофиламенты уходят из тела клетки в отростки. Клетки образуют связь нервной системы с глиальными клетками.

Отростки нервных клеток входят в состав периферических нервов. Нейроны по своей функции могут быть чувствительными (афферентные), двигательные (эфферентные), вставочные и нейросекреторные . Место отхождения аксона от тела клетки называется аксонными холмиком . Эта область нейрона обладает наибольшей чувствительностью.

Строение нервного волокна . Основной частью нервного волокна будет являться осевой цилиндр, который покрыт снаружи плазматической мембраной, а внутри осевого цилиндра находится аксоплазма, в которой проходят нейрофиламенты (микротрубочки) диаметр составляет 10 нанометров, а микротрубочки достигают 23 нанометров.

Диаметр нервного волокна колеблется от 0.5, до 50 микрометров. Осевой цилиндр покрыт оболочкой. Различают 2 разновидности оболочек (швановская и миелиновая оболочки)

В ходе эмбрионального развития осевой цилиндр аксона погружается в складку, образованную швановской клеткой. Таким образом, происходит образование швановской оболочки.

Если нервное волокно имеет только швановскую оболочку, то такие волокна относят к безмиелиновым . У других аксонов швановские клетки начинают закручиваться спиралевидно. При этом вокруг осевого цилиндра формируют слои мембран швановской клетки. Ядро и цитоплазма швановской клетки отходят к периферии. Таким образом формируется миелиновая оболочка , где осевой цилиндр оказывает покрытым миелиновой оболочкой. Миелиновая оболочка покрывает не на всем протяжении, а отдельными муфтами, протяженность которых составляет 1-2 мм. В мягких волокнах на стыке двух соседей остаются участки мембраны, не покрытые миелиновой оболочкой. Эти участки называются перехватами Ренье . Швановские клетки принимают участие в обменных процессах и в росте осевого цилиндра. Миелиновая оболочка образуется из липидов мембран. Она обладает изолирующими свойствами. Нервное волокно приобретает изоляционную оболочку. Она предназначена для проведения нервного импульса.

По аксоплазме и по нитям и трубочкам происходит транспорт веществ . Транспорт может идти в двух направлениях:

От тела клетки - антероградный транспорт .

К телу клетки - ретроградный транспорт .

По скорости переноса веществ.

По аксоплазме (1-2 мм в сутки)

По трубочкам (400 мм с сутки)

Разрыв волокна приводит к тому, что периферическая часть начинает быстро погибать. В ней развиваются процессы дегенерации. Уже через 2-3 дня нервное волокно утрачивает способность проводить возбуждение. Затем происходит распад осевого цилиндра, распадается миелиновая оболочка. И на месте бывшего волокна остается только тяж швановских клеток. Восстановление нервного волокна возможно из центрального отростка. В окончании центрального отростка возникают колбы роста , которые растут на 1 мм за сутки.

Физиологические свойства.

Как клетки возбудимой ткани: возбудимость и проводимость.

Возбудимость нервного волокна - это способность нервного волокна проводить импульс.

Сальваторное проведение нервного импульса.

Скорость проведения в мякотных волокнах будет возрастать, так как используется не вся мембрана. Чем больше диаметр нервного волокна, тем больше протяженность между оболочками.

По мере прохождения импульса не изменяется амплитуда (бездекрементное ). У холоднокровных животных сигнал может угасать.

Для проведения нервного импульса должна быть морфологическая целостность нерва.

Возбуждение проводится с двух сторон.

Закон изолированного проведения . Каждое нервное волокно проводит возбуждение изолированно. Это позволяет не распространяться импульсу в поперечном направлении.

Нервно-мышечный синапс.

Нервно-мышечный синапс - это область контакта нервного волокна с мышцами . Подходя к мышце аксон теряет миелиновую оболочку и распадается на концевые терминали (от 5 до 20) и мембраны осевого цилиндра вступают в контакт с мышечными волокнами и формируют синаптические связки.

В структуре синапса выделяют 3 элемента :

1. Ресенаптическая мембрана (мембрана осевого цилиндра)

2. Постсинаптическая мембрана (производная мембрана мышечного волокна). Эта мембрана образует складки, которые увеличивают ее поверхность.

3. Между пре- и постсинаптической мембраной находится межсинаптическая щель (2-50 нм).

В пресинаптической мембране присутствуют пузырьки, содержащие медиаторы, участвующие в проведении возбуждения. Диаметр пузырьков составляет до 50 нм. В каждом пузырьке находится до 10 000 ацетил-хориновых молекул (1 квант).

Кроме пузырьков в пресинаптической мембране содержатся митохондрии. В них идет синтез медиаторов.

Пресинаптическая мембрана обладает чувствительностью к действию электрического тока. Постсинаптическая мембрана имеет рецепторы, которые называются хоринорецепторами . Их количество в одном синапсе может достигать 40 млн. Эти рецепторы представляют собой интегральные белки, которые воспринимают действие медиатора. При взаимодействии медиатора с рецептором открываются ионные каналы, способные пропускать ионы натрия и калия (больше ионов натрия). Рецепторы также возбуждаются при действии никотина. Эта мембрана не чувствительна к действию электрического тока.

Холиностераза - вызывает разрушение медиатора.

Проведение возбуждения через синапс имеет следующие особенности :

Передача возбуждения происходит только в одном направлении.

В этом проведении возбуждения участвует химический посредник.

Задержка проведения возбуждения.

Курар - блокирует хоринорецептор, что делает невозможным передачу возбуждения.

Бунгаротоксин и кобротоксин необратимо блокируют рецепторы и наступает гибель.

Механизм прохождения возбуждения через синапс.

Потенциал концевой пластики отличается от потенциала нерва следующими принципами:

Не подчиняется закону "все или ничего"

Его амплитуда имеет градуальную зависимость от количества медиатора.

Этот потенциал местный, распространяется медленно, с затуханием, не обладает рефроктерностью и, следовательно, способен к суммации. При достижении величины 25-30 мВ этот потенциал способен вызвать потенциал действия уже в мышечном волокне.

Формирование потенциала действия происходит так же, как при прохождении нервного импульса.

По нервному волокну приходит электрических сигнал. Это вызывает изменение в пресинаптической мембране, что приводит к выделению медиатора, который проходит через межсинаптическую щель. Ацетилхолин вызывает появление потенциала концевой пластинки, который будет рождать потенциал действия в мышечном волокне. Распространение потенциала по мышцам приведет к активации сократительного механизма, которые дадут механический эффект.

Некоторые заболевания вызывают разрушение хоринорецепторов, что приводит к слабости мышц. Если двигательный нерв повреждается, то количество чувствительных рецепторов возрастает.

Синапс – это специальная структура для передачи импульсов от клетки к клетке. Каждый синапс имеет пресинаптическую и постсинаптическую мембраны и синаптическую щель между ними. Пресинаптическая мембрана покрывает окончание аксона мотонейрона. Через нее в синаптическую щель поступает медиатор, который затем взаимодействует с рецепторами (их 20-30 млн в одном синапсе) постсинаптической мембраны – это мембрана подлежащей мышечной клетки. Механизм передачи возбуждения в синапсе состоит из 3-х этапов:

1 – ПД, возникший в пресинаптической мембране, повышает ее проницаемость для ионов кальция, который входит в нервное окончание и освобождает медиатор ацетилхолин из пузырьков.

2 – Ацетилхолин диффундирует в синаптическую щель, избыток медиатора разрушает фермент ацетилхолинэстераза.

3 – Ацетилхолин взаимодействует с холинорецепторами постсинаптической мембраны, в результате чего открываются натриевые каналы для входа натрия внутрь клетки – развивается потенциал действия, который распространяется вдоль мышечного волокна, вызывая его сокращение.

Нервно-мышечный синапс имеет следующие свойства: 1.одностороннее проведение возбуждения, 2.синаптическую задержку (на выход медиатора и его диффузию), 3.низкую лабильность (до 100 имп/сек), 4.быструю утомляемость, 5.высокую чувствительность к химическим веществам, лекарственным препаратам, токсинам (что может ускорять или тормозить передачу импульсов от нерва к мышце).

Движение как основное свойство живого.

Смеется ли ребенок при виде игрушки, улыбается ли Гарибальди, когда его гонят за излишнюю любовь к родине, создает ли Ньютон мировые законы и пишет их на бумаге – везде окончательным фактом является движение – так писал отец русской физиологии И.М.Сеченов.

14.Виды мышц, функции и свойства. Все мышцы организма делятся на: поперечно-полосатые (скелетные и сердечная) и гладкие, которые выстилают стенки внутренних органов, сосудов.

Поперечно-полосатые скелетные мышцы являются активной частью опорно-двигательного аппарата. В результате их сокращений происходит перемещение тела в пространстве, перемещение частей тела относительно друг друга, поддержание позы, произносятся слова, осуществляется дыхание, а также вырабатывается тепло.

Каждое мышечное волокно имеет следующие свойства:

1. Возбудимость – способность генерировать ПД в ответ на действие раздражителей.

2. Проводимость – способность проводить возбуждение в обе стороны от места нанесения раздражения.

3. Сократимость – способность сокращаться, изменять свою длину и напряжение.

4. Утомляемость. 5. Пластичность. 6. Тонус. 7.Рефрактерность.

Типы мышечных сокращений.

В зависимости от характера сокращений мышцы различают три их вида:

1.Ауксотоническое сокращение – когда одновременно изменяется длина и напряжение мышцы. Оно может быть эксцентрическим – когда напряжение мышцы сопровождается ее удлинением (например, в процессе приседания) и концентрическим – когда напряжением мышцы сопровождается ее укорочением (например, при разгибании нижних конечностей после приседания).

2.Изометрическое сокращение – когда напряжение мышцы возрастает, а длина ее не меняется. Этот вид сокращения можно наблюдать в эксперименте, когда оба конца мышцы зафиксированы (при фиксации определенного положения).

3.Изотоническое сокращение – укорочение мышцы при ее постоянном напряжении – сокращение ненагруженной мышцы.

В зависимости от длительности сокращений мышцы выделяют 2 их вида: одиночное и тетаническое.

1.Одиночное сокращение мышцы возникает при однократном раздражении нерва или самой мышцы.

2.Тетанические сокращения – это результат суммации двух и более одиночных сокращений. При полной суммации возникает гладкий тетанус, а при неполной суммации – зубчатый тетанус. При прекращении тетанического сокращения мышца расслабляется не полностью, а некоторое время находится в состоянии посттетанической контрактуры (напряжения).

Скелетные мышцы состоят из быстрых и медленных волокон, и соответственно – моторных единиц. Это – группа мышечных волокон, которые иннервируются одним нервным волокном, отходящим от мотонейрона. Быстрая мышца (мышцы глазного яблока) содержит больше моторных единиц, чем медленная (мышцы спины).

Вне действия раздражителя, т.е. в покое, скелетные мышцы находятся в состоянии некоторого напряжения, которое называют тонусом. Внешним выражением тонуса является упругость мышц.

Работа и сила мышц.

Степень укорочения мышцы зависит как от строения, так и от функционального состояния мышцы. Чем больше длина мышцы и ее поперечное сечение, тем больше она сокращается: это мышцы, имеющие перистое строение, - массетер. Сила мышцы – это максимальный груз, который она может поднять. Например, мышцы челюсти собаки поднимают груз, превышающий вес ее тела более 8 раз, а у человека – в 4 раза.

Работа мышц – произведение поднятого груза на величину укорочения мышцы. Если мышца сокращается без нагрузки, то ее работа равна 0. По мере увеличения нагрузки работа сначала увеличивается, а затем постепенно падает. Наибольшую работу мышца совершает при средних нагрузках, и это важно знать врачу при подборе тренировочных нагрузок для спортсмена. Работа мышц, связанная с перемещением груза, называется динамической. Статическая работа совершается при удержании груза в определенном положении, когда нарастает напряжение мышц. Статическая работа более утомительна, чем динамическая.

17.Утомление – это временное понижение работоспособности клетки, органа, организма, наступающее после работы и исчезающее после отдыха. Утомление мышц наступает по разным причинам.

1.Шифф считал, что утомление – это результат истощения запасов энергии в мышце.

2.Пфлюгер полагал, что накопление в мышце недоокисленных продуктов обмена во время работы приводит к развитию утомления.

3.Ферворн доказал, что утомление связано с нехваткой кислорода в мышцах.

Эти теории утомления мышц носят узколокалистический характер, так как в целостном организме (как доказал Сеченов в опыте с пильщиками дров) утомление первично возникает не в мышцах, а в нервных центрах. Заканчиваются запасы медиатора в синапсах ЦНС, требуется время на его синтез. Работоспособность мышцы восстанавливается.

Механизм сокращения мышц.

Мышечные волокна состоят из миофибрилл. Которые содержат до 2500 протофибрилл, представленные молекулами сократительных белков – актина и миозина. Изотропные участки состоят из тонких длинных нитей актина, а анизотропные – из толстых и коротких нитей миозина. Белок миозин имеет поперечные мостики с головками, где хранится АТФ. Сам белок обладает свойствами фермента АТФ-азы. На нитях актина имеются активные центры, содержащие белки тропонин и тропомиозин. Американские ученые- братья Хаксли считают, что при сокращении мышцы белковые нити не укорачиваются, а скользят друг по другу (теория скольжения нитей). Началом мышечного сокращения является выход ионов кальция из цистерн саркоплазматического ретикулума в межфибриллярное пространство. Кальций взаимодействует с белком тропонином, что приводит к смещению тропомиозина. В результате обнажаются активные центры актина, куда с помощью энергии АТФ прикрепляются головки миозиновых нитей. Происходит скольжение миозина и актина. Мышца укорачивается. Затем с помощью кальциевого насоса ионы кальция возвращаются в цистерны. Мышца расслабляется, так как актиновые и миозиновые нити принимают прежнее положение. Энергия АТФ необходима как для сокращения мышцы, так и для ее расслабления.


Похожая информация.


Синапс – это структурно функциональное образование, которое обеспечивает передачу возбуждения или торможения с нервного волокна на иннервируемую клетку.

Мионевральный (нервно-мышечный), образованн аксоном мотонейрона и мышечной клеткой;

Синапс состоит из трех основных компонентов:

    Пресинаптическая мембрана является окончанием отростка нервной клетки. Внутри отростка в непосредственной близости от мембраны имеется скопление пузырьков (гранул), содержащих тот или иной медиатор. Пузырьки находятся в постоянном движении.

    Постсинаптическая мембрана является частью клеточной мембраны иннервируемой ткани. Постсинаптическая мембрана в отличие от пресинаптической имеет белковые хеморецепторы к биологически активным (медиаторам, гормонам), лекарственным и токсическим веществам. Важная особенность рецепторов постсинаптической мембраны – их химическая специфичность, т.е. способность вступать в биохимическое взаимодействие только с определенным видом медиатора.

    Синаптическая щель представляет собой пространство между пре- и постсинаптичекой мембранами, заполненное жидкостью, близкой по составу к плазме крови. Через нее медиатор медленно диффундирует от пресинаптической мембраны к постсинаптической.

Моторный аксон, подходя к мышце, теряет миелиновую оболочку и делится на терминальные веточки, каждая из которых подходит к отдельному мышечному веретену. Нервная клетка вместе с сарколеммой мышечного волокна образует структуру, которую называют нервно-мышечным синапсом. Оголенная часть нерва, обращенная к поверхности мышечного волокна, - это пресинаптическая мембрана; оголенная часть мышечного волокна - это пост-синаптическая мембрана; микропространство между этими мембранами - это синаптичес-кая щель. Поверхность мышечного волокна образует множественные контактные складки, на которых расположены N-холинореиепторы.

22. Определение рефлекса. Компоненты рефлекторной дуги.

Рефлекс – реакция организма на раздражение рецепторов, которая осуществляется с участием ЦНС. Структурной основой рефлекса является рефлекторная дуга.

Рефлекторная дуга (путь рефлекса) - это нейронный цепь от периферического рецептора через ЦНС к периферического эффектора (рабочего органа).

    периферические рецепторы, к которым подходят окончания афферентного (чувствительного) нейрона;

2) афферентный (чувствительный, центростремительный) нейрон – воспринимает изменения внешней или внутренней среды организма. Совокупность рецепторов, раздражение которых вызывает рефлекс, называется рефлексогенной зоной;

3) вставочный (ассоциативный) нейрон, расположенный в спинном или головном мозге – обеспечивает связь с другими отделами ЦНС, переработку и передачу импульсов к эфферентному нейрону;

4) эфферентный (двигательный, центробежный) нейрон – вместе с другими нейронами перерабатывает информацию, сформировывает ответ в виде нервных импульсов;

5) эффектор (исполнитель) – рабочий орган.

Большинство рефлексов замыкается в головном и спинном мозге, и лишь небольшое количество их замыкается вне ЦНС – в вегетативных ганглиях. Вставочных нейронов может быть от одного до множества (в нервных центрах).

Самая простая рефлекторная дуга – моносинаптическая.. Она состоит из двух нейронов – афферентного и эфферентного. Таких рефлексов мало – как правило, это сухожильные рефлексы (например, спинальные миостатические – возникающие в ответ на растяжение мышцы). Чаще дуга рефлекса содержит не менее трех нейронов: афферентный, вставочный и эфферентный. Подобные дуги называют полисинаптическими.

Синапсом (от греч. синапсис – соединение) называют область функционального соединения одного нейрона с другим или нейрона с эффектором, которым может быть либо мышца, либо внешнесекреторная железа. Это понятие ввёл в обращение на рубеже XIX – XX веков британский физиолог Чарльз С. Шеррингтон (Sherrington Ch.) для обозначения специализированных контактных зон, обеспечивающих связь между нейронами.

В 1921 году Отто Лёви (Loewi O.), сотрудник института фармакологии в Граце (Австрия), с помощью простых по исполнению и остроумных по замыслу экспериментов показал, что влияние блуждающих нервов на сердце обусловлено химическим веществом – ацетилхолином. Английский фармаколог Генри Дейл (Dale H.) сумел доказать, что ацетилхолин образуется в синапсах различных структур нервной системы. В 1936 году Лёви и Дейл получили Нобелевскую премию за открытие химической природы передачи нервной энергии.

Среднестатистический нейрон образует более тысячи синапсов с другими клетками мозга, всего же в мозгу человека приблизительно 1014 синапсов. Если считать их со скоростью 1000 штук в секунду, то лишь через несколько тысяч лет можно будет подвести итог. В подавляющем большинстве синапсов для передачи информации от одной клетки к другой используются химические посредники – медиаторы или нейротрансмиттеры. Но, наряду с химическими синапсами существуют электрические, в которых сигналы передаются без использования медиаторов.

В химических синапсах взаимодействующие клетки разделены заполненной внеклеточной жидкостью синаптической щелью шириной 20-40 нм. Для того, чтобы передать сигнал, пресинаптический нейрон выделяет в эту щель медиатор, который диффундирует к постсинаптической клетке и присоединяется к специфическим рецепторам её мембраны. Соединение медиатора с рецептором приводит к открытию (но в некоторых случаях – к закрытию) хемозависимых ионных каналов. Через открывшиеся каналы проходят ионы и этот ионный ток изменяет значение мембранного потенциала покоя постсинаптической клетки. Последовательность событий позволяет разделить синаптический перенос на два этапа: медиаторный и рецепторный. Передача информации через химические синапсы происходит гораздо медленней, чем проведение возбуждения по аксонам, и занимает от 0,3 до нескольких мс – в связи с этим получил распространение термин синаптическая задержка.

В электрических синапсах расстояние между взаимодействующими нейронами очень мало – приблизительно 3-4 нм. В них пресинаптический нейрон соединяется с постсинаптической клеткой особым видом ионных каналов, пересекающих синаптическую щель. По этим каналам локальный электрический ток может распространяться от одной клетки к другой.

Из всех существующих в организме человека синапсов наиболее простым является нервно-мышечный. который был хорошо изучен ещё в 50-х годах ХХ века Бернардом Катцем и его коллегами (Katz B. – лауреат Нобелевской премии 1970 года). В образовании нервно-мышечного синапса участвуют тонкие, свободные от миелина разветвления аксона мотонейрона и иннервируемые этими окончаниями волокна скелетной мышцы (Рис 5.1).

Каждая веточка аксона на конце утолщается: это утолщение называют концевой пуговкой или синаптической бляшкой. В ней содержатся синаптические пузырьки, заполненные медиатором: в нервно-мышечном синапсе им является ацетилхолин. Большая часть синаптических пузырьков расположена в активных зонах: так называются специализированные части пресинаптической мембраны, где медиатор может выделяться в синаптическую щель. В пресинаптической мембране есть каналы для ионов кальция, которые в покое закрыты и открываются лишь тогда, когда к окончанию аксона проводятся потенциалы действия.

Концентрация ионов кальция в синаптической щели намного выше, чем в цитоплазме пресинаптического окончания нейрона, и поэтому открытие кальциевых каналов приводит к вхождению кальция в окончание. Когда концентрация кальция в окончании нейрона повысится, синаптические пузырьки сливаются с активной зоной. Содержимое слившегося с мембраной пузырька опорожняется в синаптическую щель: такой механизм выделения называется экзоцитозом. В одном синаптическом пузырьке содержится около 10 000 молекул ацетилхолина, а при передаче информации через нервно-мышечный синапс он одновременно освобождается из многих пузырьков и диффундирует к концевой пластинке.

Концевой пластинкой называется часть мышечной мембраны, контактирующая с нервными окончаниями. У неё складчатая поверхность, причём складки находятся точно напротив активных зон пресинаптического окончания. На каждой складке, расположившись в форме решётки, сосредоточены холинорецепторы, их плотность около 10 000/ мкм2. В глубине складок холинорецепторов нет – там только потенциалзависимые каналы для натрия, причём их плотность тоже высока.

Встречающаяся в нервно-мышечном синапсе разновидность постсинаптических рецепторов относится к типу никотинчувствительных или Н-холинорецепторов (в главе 6 будет описана другая разновидность – мускаринчувствительные или М-холинорецепторы). Это трансмембранные белки, являющиеся одновременно и рецепторами, и каналами (Рис. 5.2). Они состоят из пяти субъединиц, сгруппированных вокруг центральной поры. Две субъединицы из пяти одинаковы, они имеют выступающие наружу концы аминокислотных цепей – это рецепторы, к которым присоединяется ацетилхолин. Когда рецепторы свяжут две молекулы ацетилхолина, конформация белковой молекулы изменяется и во всех субъединицах сдвигаются заряды гидрофобных участков канала: в результате появляется пора диаметром около 0,65 нм.

Через неё могут пройти ионы натрия, калия и даже двухвалентные катионы кальция, в то же время прохождению анионов мешают отрицательные заряды стенки канала. Канал бывает открыт в течение приблизительно 1 мс, но за это время через него в мышечное волокно входит около 17 000 ионов натрия, а несколько меньшее количество ионов калия – выходит. В нервно-мышечном синапсе почти синхронно открывается несколько сотен тысяч управляемых ацетилхолином каналов, поскольку выделившийся только из одного синаптического пузырька медиатор открывает около 2000 одиночных каналов.

Суммарный результат ионного тока натрия и калия через хемозависимые каналы определяется преобладанием тока натрия, что приводит к деполяризации концевой пластинки мышечной мембраны, на которой возникает потенциал концевой пластинки (ПКП). Его величина составляет как минимум 30 мВ, т.е. всегда превышает пороговое значение. Возникший в концевой пластинке деполяризующий ток направляется к соседним, внесинаптическим участкам мембраны мышечного волокна. Поскольку его величина всегда выше пороговой, он активирует потенциалзависимые натриевые каналы, расположенные поблизости от концевой пластинки и в глубине её складок вследствие этого возникают потенциалы действия, которые распространяется вдоль мышечной мембраны.

Выполнившие свою задачу молекулы ацетилхолина быстро расщепляются находящимся на поверхности постсинаптической мембраны ферментом – ацетилхолинэстеразой. Её активность достаточно высока и за 20 мс она в состоянии все связанные с рецепторами молекулы ацетилхолина превратить в холин и ацетат. Благодаря этому холинорецепторы освобождаются для взаимодействия с новыми порциями медиатора, если он продолжает выделяться из пресинаптического окончания. Одновременно с этим ацетат и холин с помощью специальных механизмов транспорта поступают в пресинаптическое окончание и используются для синтеза новых молекул медиатора.

Таким образом, основными этапами передачи возбуждения в нервно-мышечном синапсе являются:

1) возбуждение мотонейрона, распространение потенциала действия на пресинаптическую мембрану;

2) повышение проницаемости пресинаптической мембраны для ионов кальция, ток кальция в клетку, повышение концентрации кальция в пресинаптическом окончаниии;

3) слияние синаптических пузырьков с пресинаптической мембраной в активной зоне, экзоцитоз, поступление медиатора в синаптическую щель;

4) диффузия ацетилхолина к постсинаптической мембране, присоединение его к Н-холинорецепторам, открытие хемозависимых ионных каналов;

5) преобладающий ионный ток натрия через хемозависимые каналы, образование надпорогового потенциала концевой пластинки;

6) возникновение потенциалов действия на мышечной мембране;

7) ферментативное расщепление ацетилхолина, возвращение продуктов расщепления в окончание нейрона, синтез новых порций медиатора.

5.3. Помехи в синаптической передаче

Нарушение любого из этапов синаптической передачи разлаживает деятельность синапса в целом. Так, например, при отравлении ботулиническим токсином может наступить мышечный паралич и даже смерть из-за прекращения деятельности дыхательных мышц. Этот токсин выделяют бактерии

Сlostridium botulinum, которые быстро размножаются в мясных и рыбных консервах, приготовленных с нарушениями технологии, что чаще всего бывает при домашнем консервировании. Ботулинический токсин даже в малой концентрации способен блокировать выделение ацетилхолина из пресинаптических окончаний мотонейрона, а следствием этой блокады является мышечный паралич.

Давно известен яд кураре, которым южноамериканские индейцы обрабатывали наконечники своих стрел. Кураре представляет собой сгущённый растительный экстракт древесного сока, добываемого из коры лиан видов Strychnos и Chondodendron. Этот яд может присоединиться к Н-холинорецепторам в нервно-мышечном синапсе, становясь конкурентом ацетилхолину. Длительная блокада холинорецепторов ядом приводит к остановке дыхания и смерти (надо принять во внимание, что деятельность дыхательных мышц регулируется мотонейронами, которые передают возбуждение через нервно-мышечные синапсы).

Связь яда кураре с холинорецепторами обратима: если ацетилхолин накапливается в синапсе в высокой концентрации, он начинает вытеснять кураре и ослаблять взаимодействие яда с рецепторами. Основное действующее вещество кураре – a-тубокурарин, который был выделен из растительной смеси ещё в1935 году и в дальнейшем получил распространение в медицинской практике. Его вводят при проведении хирургических операций в качестве средства, расслабляющего мускулатуру; при этом пациент должен находиться на искусственно управляемом дыхании.

Другой яд – a-бунгаротоксин вступает с Н-холинорецепторами в необратимую связь. Он образуется в ядовитых железах бунгаров или крайтов – змей, родственных кобрам. В железах некоторых видов бунгаров содержится до пяти смертельных доз этого яда. С 1970 года очищенные и снабжённые радиоактивной меткой молекулы a-бунгаротоксина стали применять в исследовательских целях. Меченые молекулы необратимо связываются с холинорецепторами, что позволяет, с помощью метки, определять количество таких рецепторов, их расположение и т.п. Таким способом было, например, доказано, что развитие миастении (прогрессирующей мышечной слабости) обусловлено уменьшением количества холинорецепторов, которые, как оказалось, при этой болезни повреждаются аутоантителами.

Не так уж редко встречаются, к сожалению, отравления фосфоорганическими веществами, такими, например, как тиофос, хлорофос, карбофос и т.п. При поступлении этих веществ в организм человека они расщепляются на ещё более токсичные метаболиты, которые обладают антихолинэстеразным действием, т.е. угнетают активность холинэстеразы. В результате прекращается нормальное расщепление ацетилхолина, что нарушает всю обычную деятельность синапса. Это приводит сначала к мышечным судорогам, а затем к параличам и остановке дыхания.

Центральные синапсы, в отличие от нервно-мышечного, образованы тысячами соединений между многими нейронами, в которых могут использоваться десятки нейромедиаторов различной химической природы. При этом следует учитывать, что для каждого нейротрансмиттера существуют специфические рецепторы, которые разными способами управляют хемозависимыми каналами. Кроме того, если в нервно-мышечных синапсах всегда передаётся лишь возбуждение, то центральные синапсы могут быть как возбуждающими, так и тормозными.

В нервно-мышечном синапсе одиночный потенциал действия, достигший пресинаптического окончания, способен привести к выделению достаточного для передачи сигнала количества медиатора и поэтому потенциал концевой пластинки всегда превышает пороговое значение. Одиночные постсинаптические потенциалы центральных синапсов как правило не превышают даже 1 мВ – их среднее значение составляет всего лишь 0,2- 0,3 мВ, что совершенно недостаточно для достижения критической деполяризации. Чтобы её получить, требуется суммарная активность от 50 до 100 потенциалов действия, достигших пресинаптического окончания один за другим – тогда общее количество выделившегося медиатора может оказаться достаточным для того, чтобы сделать деполяризацию постсинаптической мембраны критической.

В возбуждающих синапсах центральной нервной системы используются, так же, как и в нервно-мышечном синапсе, хемозависимые каналы, которые одновременно пропускают ионы натрия и калия. Когда такие каналы открываются при обычном для центральных нейронов значении потенциала покоя (приблизительно -65 мВ), преобладает направленный внутрь клетки деполяризующий ток натрия.

Потенциал действия обычно возникает в триггерной зоне – аксонном холмике, где самая высокая плотность потенциалзависимых каналов и самый низкий порог деполяризации. Здесь оказывается достаточным сдвиг значения мембранного потенциала с -65 Мв до -55 мВ, чтобы возник потенциал действия. В принципе потенциал действия может образоваться и на теле нейрона, но для этого понадобится изменить мембранный потенциал с -65 мВ до приблизительно -35 мВ, т.е. в этом случае постсинаптический потенциал должен быть гораздо больше – около 30 мВ.

Большинство возбуждающих синапсов образуется на ветвях дендритов. У типичного нейрона обычно существует от двадцати до сорока главных дендритов, разделяющихся на множество мелких ветвей. На каждой такой веточке есть две области синаптических контактов: главный стержень и шипики. Возникшие там возбуждающие постсинаптические потенциалы (ВПСП) пассивно распространяются к аксонному холмику, при этом амплитуда этих локальных потенциалов уменьшается пропорционально расстоянию. И, если даже максимальная величина ВПСП в контактной зоне не превышает 1 мВ, то в триггерной зоне обнаруживается и вовсе ничтожный деполяризующий сдвиг.

При таких обстоятельствах критическая деполяризация триггерной зоны возможна лишь в результате пространственной или последовательной суммации одиночных ВПСП (Рис. 5.3).

Пространственная суммация происходит при одновременной возбуждающей активности группы нейронов, аксоны которых конвергируют к одной общей постсинаптической клетке. В каждой из контактных зон образуется небольшой ВПСП, который пассивно распространяется к аксонному холмику. Когда слабые деполяризующие сдвиги достигают его одновременно, суммарный итог деполяризации может составить величину более 10 мВ: только в таком случае мембранный потенциал уменьшается с -65 мВ до критического уровня -55 мВ и возникает потенциал действия.

Последовательная суммация, её ещё называют временной, наблюдается при достаточно частом ритмическом возбуждении пресинаптических нейронов, когда к пресинаптическому окончанию один за другим через короткий промежуток времени проводятся потенциалы действия. В течение всего этого времени выделяется медиатор, что и приводит к увеличению амплитуды ВПСП. В центральных синапсах оба механизма суммации обычно действуют одновременно и это даёт возможность передать возбуждение постсинаптическому нейрону.

Лишь недавно удалось найти некоторые, очень небольшие морфологические различия между возбуждающими и тормозными синапсами – у последних оказалась чуть меньшей ширина синаптической щели, меньше активные зоны, тоньше базальная мембрана, а синаптические пузырьки несколько отличаются по форме. Тормозные синапсы чаще всего образуются на теле нейрона. В них, как и в возбуждающих синапсах, выделяются нейротрансмиттеры, присоединяются к рецепторам постсинаптической мембраны, после чего открываются хемозависимые каналы. Принципиальное отличие тормозных синапсов в том, что открывающиеся каналы предназначаются не для натрия, как в возбуждающих синапсах, а для прохождения ионов хлора или ионов калия. Если откроются каналы для анионов хлора, то они по концентрационному градиенту входят в клетку. В результате сумма отрицательных зарядов в клетке увеличивается и происходит гиперполяризация мембраны: значение мембранного потенциала возрастает с -65 мВ до, например, -70 мВ. Из состояния гиперполяризации возбудить нейрон труднее: здесь понадобится деполяризующий сдвиг не в 10 мВ, как обычно, а не менее 15 мВ, поскольку критический уровень деполяризации мембраны после торможения остаётся прежним, т.е. -55 мВ (Рис. 5.4).

В том случае, когда в тормозном синапсе используются хемозависимые каналы для калия, тоже происходит гиперполяризация, так как калий выходит из клетки по концентрационному градиенту. Следовательно, и в этом варианте чувствительность клетки ко всем возбуждающим сигналам снижается. Таким образом, независимо от того, используются в тормозных синапсах каналы для хлора, что встречается чаще, или для калия, результатом всегда будет гиперполяризующий сдвиг, который называется тормозным постсинаптическим потенциалом (ТПСП).

Что же произойдёт с нейроном, на который одновременно подействуют возбуждающие и тормозные нейроны? На его дендритах появятся небольшие ВПСП, сумма которых немного превышает 10 мВ – этого обычно хватает, чтобы возбудить клетку. Но, когда деполяризующие потенциалы будут распространяться по направлению к аксонному холмику, мембрана тела нейрона окажется гиперполяризованной под действием тормозных синапсов. Произойдёт суммация ВПСП и ТПСП, в результате которой деполяризующий сдвиг либо исчезнет совсем, либо уменьшится, но и в том, и в другом варианте потенциал действия уже не сможет возникнуть. Такой вид торможения активности нейрона называется постсинаптическим.

Наряду с ним встречается ещё один вид торможения, который называется пресинаптическим и наблюдается в аксо-аксональных синапсах: здесь аксон тормозного нейрона образует синапс на окончании возбуждающего нейрона. В таких синапсах обычно используются каналы для ионов хлора – их вход в окончание возбуждающего нейрона уменьшает амплитуду проводящихся по нему потенциалов действия. В связи с этим уменьшается количество медиатора, который выделяется в окончании аксона и, соответственно величина ВПСП.

Различие с тотальным постсинаптическим торможением заключается в том, что пресинаптическое торможение является избирательным – оно блокирует лишь один возбуждающий вход и постсинаптический нейрон сохраняет возможность возбуждаться другими, не подвергнутыми торможению нейронами. Пресинаптическое торможение широко используется, например, для контроля поступающих в ЦНС сенсорных потоков или для регуляции двигательных систем спинного мозга, когда необходимо блокировать поступление лишней или "нежелательной" информации, но сохранить при этом возбудимость постсинаптического нейрона в целом.

Наряду с пресинаптическим торможением встречается и пресинаптическое усиление, когда в аксо-аксональном синапсе действует медиатор, повышающий эффективность возбуждающего нейрона. В целом же аксо-аксональные синапсы выполняют модулирующую функцию: не имея прямого влияния на зону возникновения импульса, они контролируют количество выделяющегося медиатора.

Передаваясь от одного нейрона к другому, возбуждение, если рассуждать теоретически, могло бы распространиться на большинство клеток мозга, в то время как для нормальной деятельности необходимо строго упорядоченное чередование активности определённых групп нейронов, соединённых друг с другом топографически точными связями. Необходимостью упорядочить передачу сигналов, предупредить ненужное распространение возбуждения и определяется функциональная роль тормозных нейронов.

Следует обратить внимание на очень важное обстоятельство: торможение всегда является местным процессом, оно не может, подобно возбуждению, распространяться от одной клетки к другой. Торможение лишь угнетает процесс возбуждения или препятствует самому возникновению возбуждения.

Убедиться в исключительно важной роли торможения помогает простой, но поучительный эксперимент. Если экспериментальному животному ввести некоторое количество стрихнина (это алкалоид семени чилибухи или рвотного ореха), блокирующего только одну разновидность тормозных синапсов в центральной нервной системе, то начнётся неограниченное распространение возбуждения в ответ на любой раздражитель, что приведёт к неупорядоченной активности нейронов, затем возникнут мышечные судороги, конвульсии и, наконец, смерть.

Тормозные нейроны есть во всех областях мозга, например, в спинном мозгу распространены тормозные клетки Реншоу, в коре мозжечка нейроны Пуркинье, звёздчатые клетки и т.д. В качестве тормозных медиаторов чаще других используются гамма-аминомасляная кислота (ГАМК) и глицин, хотя тормозная специфичность синапса зависит не от медиатора, а исключительно от типа хемозависимых каналов: в тормозных синапсах это каналы для хлора или для калия.

Существует несколько весьма характерных, типовых вариантов торможения: возвратное (или антидромное), реципрокное, нисходящее, центральное и т.д. Возвратное торможение позволяет регулировать выходную активность нейрона по принципу отрицательной обратной связи (Рис. 5.5). Здесь возбуждающий какую-либо клетку нейрон одной из коллатералей своего аксона действует ещё и на вставочный тормозной нейрон, который начинает тормозить активность самой возбуждающей клетки. Так, например, мотонейрон спинного мозга возбуждает мышечные волокна, а другая коллатераль его аксона возбуждает клетку Реншоу, которая тормозит активность самого мотонейрона

Реципрокное торможение (от лат. reciprocus – взаимный) наблюдается, например, в тех случаях, когда коллатерали входящего в спинной мозг аксона афферентного нейрона образуют две ветви: одна из них возбуждает мотонейроны мышцы-сгибателя, а другая – тормозной интернейрон, который действует на мотонейрон для мышцы-разгибателя. Благодаря реципрокному торможению мышцы-антагонисты не могут сокращаться одновременно и, если для совершения движения сокращаются сгибатели, то разгибатели должны расслабляться.

Нисходящее торможение впервые описал И. М. Сеченов: он обнаружил, что рефлексы спинного мозга у лягушки замедляются, если её промежуточный мозг раздражать кристалликом поваренной соли. Сеченов назвал такое торможение центральным. Нисходящее торможение может, например, управлять передачей афферентных сигналов: длинные аксоны некоторых нейронов ствола мозга способны тормозить активность интернейронов спинного мозга, получающих информацию о болевом раздражении. Некоторые двигательные ядра ствола мозга могут активировать деятельность тормозных интернейронов спинного мозга, которые, в свою очередь, способны уменьшить активность мотонейронов – такой механизм важен для регуляции тонуса мышц.

5.7. Функциональное значение химических синапсов в переносе информации

Можно с уверенностью сказать, что синапсам принадлежит решающая роль во всей деятельности мозга. Этот вывод обоснован по меньшей мере тремя важными доказательствами:

1. Все химические синапсы функционируют по принципу клапана, поскольку информация в нём может передаваться только от пресинаптической клетки к постсинаптической и никогда – наоборот. Именно этим определяется упорядоченное направление передачи информации в ЦНС.

2. Химические синапсы способны усиливать или ослаблять передаваемые сигналы, причём любая модификация может осуществляться несколькими способами. Эффективность синаптической передачи изменяется в связи с увеличением или уменьшением тока кальция в пресинаптическое окончание, что сопровождается соответствующим увеличением или уменьшением количества выделяющегося медиатора. Деятельность синапса может изменяться в связи с меняющейся чувствительностью постсинаптической мембраны, которая способна уменьшать или увеличивать количество и эффективность функционирования своих рецепторов. Благодаря этим возможностям проявляется пластичность межклеточных соединений, на основе которой синапсы участвуют в процессе научения и формировании следов памяти.

3. Химический синапс представляет собой область действия многих биологически активных веществ, лекарств или иных химических соединений, по той или иной причине поступивших в организм (токсины, яды, наркотики). Одни вещества, имея сходную с медиатором молекулу, конкурируют за право связываться с рецепторами, другие – не позволяют медиаторам своевременно разрушаться, третьи – стимулируют или угнетают выделение медиаторов из пресинаптических окончаний, четвёртые – усиливают или ослабляют действие тормозных медиаторов и т. д. Результатом изменений синаптической передачи в тех или иных химических синапсах может стать появление новых форм поведения.

Большинство известных электрических синапсов образованы большими пресинаптическими аксонами, контактирующими со сравнительно мелкими волокнами постсинаптических клеток. Передача информации в них происходит без химического посредника, а между взаимодействующими клетками очень небольшое расстояние: ширина синаптической щели около 3,5 нм, тогда как в химических синапсах она варьирует от 20 до 40 нм. Кроме того, синаптическую щель пересекают соединительные мостики – специализированные белковые структуры, образующие т.н. коннексоны (от англ. connexion – соединение) (Рис. 5.6).

Коннексоны представляют собой трансмембранные белки цилиндрической формы, которые образованы шестью субъединицами и в центре имеют довольно широкий, около 1,5 нм в диаметре, канал с гидрофильными стенками. Коннексоны соседних клеток располагаются друг против друга так, что каждая из шести субъединиц одного коннексона как бы продолжается субъединицами другого. Фактически коннексоны являются полуканалами, но совмещение коннексонов двух клеток образует полноценный канал, который эти две клетки соединяет. Механизм открывания и закрывания таких каналов состоит во вращательных перемещениях его субъединиц.

Эти каналы обладают малым сопротивлением и потому хорошо проводят электрический ток от одной клетки к другой. Поток положительных зарядов от пресинаптической мембраны возбуждённой клетки вызывает деполяризацию постсинаптической мембраны. Когда такая деполяризация достигает критического значения, открываются потенциалзависимые каналы для натрия и возникает потенциал действия.

Всё происходит очень быстро, без характерной для химических синапсов задержки, связанной с относительно медленной диффузией медиатора от одной клетки к другой. Соединённые электрическими синапсами клетки реагируют как единое целое на поступивший к одной из них сигнал, латентное время между пресинаптическим и постсинаптическим потенциалами практически не определяется.

Направление передачи сигнала в электрических синапсах обусловлено различиями входного сопротивления контактирующих клеток. Обычно большое пресинаптическое волокно одновременно передаёт возбуждение нескольким соединённым с ним клеткам, создавая в них значительное изменение напряжения. Так, например, в хорошо изученном гигантском аксо-аксональном синапсе речного рака толстое пресинаптическое волокно возбуждает несколько значительно уступающих ему в толщине аксонов других клеток.

Электрическая синаптическая передача сигнала оказывается биологически полезной при осуществлении реакций бегства или защиты в случае внезапной опасности. Таким способом, например, синхронно активируются мотонейроны и следом происходит молниеносное движение хвостового плавника у золотой рыбки при реакции бегства. Такая же синхронная активация нейронов обеспечивает залповый выброс маскирующей краски морским моллюском при возникновении опасной ситуации.

Через каналы коннексонов осуществляется ещё и метаболическое взаимодействие клеток. Достаточно большой диаметр пор каналов позволяет проходить не только ионам, но и органическим молекулам средних размеров, в том числе и важным вторичным посредникам, таким, как циклический АМФ, инозитолтрифосфат, а также небольшим пептидам. Этот транспорт, видимо, имеет большое значение в процессе развития мозга.

Резюме

Синапсам принадлежит ключевая роль в организации информационных потоков. Химические синапсы не просто передают сигнал, но они трансформируют его, усиливают, меняют характер кода. Химические синапсы функционируют как клапан: они передают информацию только в одном направлении. Взаимодействие возбуждающих и тормозных синапсов сохраняет наиболее значимую информацию и устраняет несущественную. Эффективность синаптической передачи может увеличиваться или уменьшаться как за счёт меняющейся концентрации кальция в пресинаптическом окончании, так и за счёт изменения количества рецепторов постсинаптической мембраны. Подобная пластичнность синапсов служит предпосылкой для их участия в процессе научения и формировании памяти. Синапс представляет собой мишень для действия многих веществ, способных блокировать или, наоборот, стимулировать синаптическую передачу. Передача информации в электрических синапсах происходит с помощью коннексонов, имеющих малое сопротивление и проводящих электрический ток от аксона одной клетки к аксонам другой.

Вопросы для самоконтроля

61. Что происходит с выделившимся из пресинаптического окончания медиатором?

А. Он диффундирует через постсинаптическую мембрану; Б. Присоединяется к рецепторам постсинаптической мембраны; В. Переносится через постсианптическую мембрану активным транспортом; Г. Связывается белками синаптической жидкости; Д. Накапливается в синаптической щели, тем самым уменьшая электрическое сопротивление.

62. В норме на 1 кв. мкм концевой пластинки находится примерно 10 000 холинорецепторов. Что произойдёт вследствие уменьшения количества рецепторов при миастении?

А. Уменьшение синтеза медиатора; Б. Уменьшение тока ионов кальция через пресинаптическое окончание; В. Уменьшение величины потенциала концевой пластинки; Г. Уменьшение амплитуды потенциалов действия на мышечной мембране; Д. Инактивация холинэстеразы в синаптической щели.

63. От чего непосредственно зависит величина потенциала концевой пластинки?

А. От интенсивности синтеза ацетилхолина в мотонейроне; Б. От концентрации ионов кальция в пресинаптическом окончании; В. От концентрации не связанного с рецепторами медиатора в синаптической щели; Г. От количества не связанных с ацетилхолином рецепторов постсинаптической мембраны; Д. От количества холинорецепторов, присоединивших к себе медиатор.

64. Что является пусковым моментом для выделения медиатора из пресинаптического окончания?

А. Ток ионов калия из пресинаптического окончания; Б. Ток ионов хлора в пресинаптическое окончание; В. Выход ионов кальция из пресинаптического окончания; Г. Ток ионов натрия в пресинаптическое окончание; Д. Повышение концентрации ионов кальция в пресинаптическом окончании.

65. Каким транспортным механизмом медиатор проходит через синаптическую щель к постсинаптической мембране?

А. Диффузия; Б. Осмос; В. Активный транспорт; Г. С помощью специального переносчика; Д. Используются все механизмы транспорта.

66. Молекулы змеиного яда a-бунгаротоксина могут присоединяться к холинорепторам концевой пластинки. Что произойдёт в результате такого соединения?

А. Инактивация холинэстеразы; Б. Уменьшение образования ацетилхолина; В. Уменьшение величины потенциала концевой пластинки; Г. В постсинаптической мембране откроются каналы для натрия; Д. В постсинаптической мембране откроются каналы для кальция.

67. Преимущественный ток каких ионов обусловливает формирование потенциала концевой пластинки?

А. Кальция; Б. Хлора; В. Натрия; Г. Калия; Д. Всех катионов.

68. Какую функцию выполняет ацетилхолинэстераза в нервно-мышечном синапсе?

А. Увеличивает величину потенциала концевой пластинки; Б. Увеличивает продолжительность потенциала концевой пластинки; В. Стимулирует синтез медиатора; Г. Расщепляет медиатор, связавшийся с холинорецепторами; Д. Обеспечивает своевременное закрытие хемозависимых каналов.

69. Что из перечисленного ниже характерно для потенциала концевой пластинки?

А. Образуется при использовании хемозависимых каналов; Б. Образуется при использовании потенциалзависимых каналов; В. Образуется по правилу "всё или ничего"; Г. Имеет равную с потенциалом действия амплитуду; Д. Имеет равную с потенциалом действия длительность.

70. К чему приводит действие яда кураре на нервно-мышечный синапс?

А. Инактивируется ацетилхолинэстераза; Б. Угнетается синтез ацетилхолина; В. Блокируется выделение ацетилхолина; Г. Блокируются холинорецепторы; Д. Расщепляется ацетилхолин.

71. Что из указанного ниже характерно для возбуждающих постсинаптических потенциалов центральных синапсов и не характерно для потенциала концевой пластинки в нервно-мышечном синапсе?

А. Использование хемозависимых каналов; Б. Деполяризующий сдвиг формируется вследствие тока ионов натрия; В. Деполяризующий сдвиг, как правило, подпороговый; Г. При пороговом значении постсинаптического потенциала возникают потенциалы действия; Д. Возникновение потенциалов действия обусловлено использованием потенциалзависимых каналов.

72. Что из указанного ниже характеризует тормозной постсинаптический потенциал?

А. Ток ионов натрия через постсинаптическую мембрану; Б. Подпороговая деполяризация постсинаптической мембраны; В. Пороговая деполяризация постсинаптической мембраны; Г. Возникновение потенциалов действия на постсинаптической мембране; Д. Гиперполяризация постсинаптической мембраны.

73. Каналы каких ионов могут использоваться в тормозных синапсах?

А. Калия; Б. Натрия; В. Кальция; Г. Магния; Д. Всех катионов.

74. Величина мембранного потенциала постсинаптического нейрона равна -70 мВ, а уровень критической деполяризации – -50 мВ. С дендритами этой клетки две группы возбуждающих нейронов образуют синапсы, в которых возникают возбуждающие постсинаптические потенциалы, суммируемые как ВПСП 1 и ВПСП 2. При каком из указанных ниже вариантов в постсинаптическом нейроне может возникнуть потенциал действия?

А. ВПСП 1 – 7 мВ, ВПСП – 2 – 9 мВ; Б. ВПСП 1 – 8 мВ, ВПСП 2 – 11 мВ; В. ВПСП 1 – 15 мВ, ВПСП 2 – 4 мВ; Г. ВПСП 1 – 5, ВПСП 2 – 13 мВ; Д. ВПСП 1 – 12, ВПСП 2 – 9 мВ.

75. Мембранный потенциал постсинаптического нейрона равен -80 мВ, а критический уровень деполяризации – -52 мВ. На его дендритах возникают возбуждающие постсинаптические потенциалы, а на теле – тормозные. При каком значении ВПСП и ТПСП постсинаптический нейрон должен возбудиться?

А. ВПСП 30 мВ, ТПСП 11 мВ; Б. ВПСП 35 мВ, ТПСП 12 мВ; В. ВПСП 25 мВ, ТПСП 4 мВ, Г. ВПСП 27 мВ, ТПСП 6 мВ; Д. ВПСП 35 мВ, ТПСП 6 мВ.

76. Какой из перечисленных ниже медиаторов чаще других выполняет роль тормозного нейротрансмиттера?

А. Ацетилхолин; Б. ГАМК; В. Адреналин; Г. Норадреналин; Д. Дофамин.

77. Что из указанного ниже характерно для пресинаптического торможения?

А. Образование ТПСП на теле постсинаптического нейрона; Б. Гиперполяризация тела постсинаптического нейрона; В. Постсинаптический нейрон временно перестаёт возбуждаться, независимо от источников входной информации; Г. Постсинаптический нейрон временно перестаёт возбуждаться от одного из источников входной информации; Д. Постсинаптический нейрон оказывается временно неспособным генерировать потенциалы действия.

78. Если топографические связи между двумя группами нейронов всегда обусловливают торможение в одной из них при возбуждении другой и наоборот, то такое торможение называется:

А. Возвратным; Б. Реципрокным; В. Центральным; Г. Нисходящим; Д. Пресинаптическим.

79. Если возбуждающий нейрон подействует на тормозной вставочный нейрон, который образует синапс с этим же возбуждающим нейроном, то наблюдаемое торможение определяется как:

А. Возвратное, Б. Реципрокное; В. Нисходящее; Г. Центральное; Д. Вставочное.

80. Что характерно для электрических синапсов?

А. Особенно высокое сопротивление передающимся сигналам; Б. Увеличенная ширина синаптической щели; В. Использование особого типа рецепторов; Г. Использование особого типа потенциалзависимых каналов для натрия; Д. Отсутствие синаптической задержки.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!