Упражнения. Питание. Диеты. Тренировки. Спорт

Для чего рыбе пузырь. Зачем рыбам нужен плавательный пузырь? Смотреть что такое "Плавательный пузырь" в других словарях

Министерство сельского хозяйства

Российская Федерация

ФГБОУ ВПО «Ярославская государственная сельскохозяйственная академия»

Кафедра частной зоотехнии

Контрольная работа по дисциплине

РЫБОВОДСТВО

Ярославль, 2013

ВОПРОСЫ ДЛЯ ВЫПОЛНЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ.

4 . Плавательный пузырь.

24 . Земляные плотины и дамбы.

49 . Характеристика комбикормов.

Вопрос №4.

ПЛАВАТЕЛЬНЫЙ ПУЗЫРЬ.

Важную роль в обеспечении движения рыб в водной тол­ще играет специальный гидростатический орган – плавательный пузырь . Это однокамерный или двухкамерный орган, наполнен­ный газами. Его нет у глубоководных рыб, а также у рыб, быстро меняющих глубину плавания (тунцы, скумбрия). Кроме гидроста­тической плавучести плавательный пузырь выполняет ряд допол­нительных функций – добавочного органа дыхания, резонатора звуков, звукоиздающего органа (Привезенцев Ю. А., 2000).

Рисунок 1 – Органы водного и воздушного дыхания у взрослых рыб:

1 – выпячивание в ротовой полости, 2 – наджаберный орган, 3, 4, 5 – отделы плавательного пузыря, 6 – выпячивание в желудке, 7 – участок поглощения кислорода в кишечнике, 8 – жабры

Плавательный пузырь развивается в личинке рыбы из передней кишки и остается у большинства пресноводных рыб в течение всей жизни. После вылупления личинки рыб еще не имеют газа в плавательном пузыре. Чтобы его наполнить, им приходится подниматься к водной поверхности и всасывать там воздух.

В зависимости от анатомии пу­зыря рыбы делятся на две большие группы: открытопузырные (большинство видов) и закрытопузырные (окуневые, треска, ке­фаль, колюшка и др.). У открытопузырных плавательный пузырь сообщается с кишечником протоком, который у закрытопузырных отсутствует. Поскольку выравнивание давления у закрытопузырных длится намного дольше, чем у открытопузырных, они могут только медленно подниматься из глубоких слоев воды. Поэтому у этих рыб передняя кишка из-за сильно раздувшегося плавательного пузыря высовывается изо рта, если их подсекают на глубине и быстро извлекают на поверхность. Самыми известными закрытопузырными являются окунь, судак и колюшка. У некоторых обитающих вблизи дна рыб плавательный пузырь сильно редуцирован или отсутствует полностью. Сом, как типичный представитель придонных рыб, обладает лишь плохо сформированным плавательным пузырем. Бычок-подкаменщик, который держится между камнями и под ними в ручьях и реках, вообще не имеет плавательного пузыря. Поскольку он плохой пловец, то движется по дну с расставленными в стороны грудными плавниками (www.fishingural.ru).

Рисунок 2 – Плавательный пузырь: а) плавательный пузырь, связанный с кишечником; б) плавательный пузырь, не связанный с кишечником.

У карповых рыб плавательный пузырь делится на пе­реднюю и заднюю камеры, которые соединены узким и коротким каналом. Стенка передней камеры состоит из внутренней и наружной оболочек. Наружная оболочка в задней камере отсутствует. Внут­ренняя выстилка обеих камер образована однослойным плоским эпителием, за которым следуют тонкий слой рыхлой соединитель­ной ткани, мышечные тяжи и сосудистый слой. Далее расположены 2-3 эластические пластинки. Наружная оболочка передней камеры состоит из двух слоев плотной волокнистой (игольчатой) соедини­тельной ткани, придающей ей перламутровый блеск. Снаружи обе камеры покрыты серозной оболочкой (Грищенко Л.И., 1999).

У молоди пузырь полностью прозрач­ный и чистый, а с возрастом мутнеет; состоит из соединительнотканной оболочки. Пузырь наполнен различными газами, количественные соотношения которых различны. Наполненный плавательный пузырь представляет собой гидростатический аппарат, способствующий вертикальному перемещению рыб в результате перемещения газов в переднюю или заднюю камеру (при двухкамерном пузыре). Если карп вынужден более длительное время вдыхать воздух, то передняя камера плава­тельного пузыря значительно увеличивается (Кох В., Банк О., Йенс Г., 1980).

Плавательный пузырь является органом, связанным рефлекторно с мышцами тела и влияющим на тонус и координированные движения мышц. Напряжение газов в плавательном пузыре создает определенные импульсы к поведению рыбы. Так, например, если наполнить плавательный пузырь морского окуня индифферентной жидкостью под повышенным давлением так, чтобы стенки пузыря несколько растянулись, рыба плавает у дна; если же давление жидкости на стенке понизить, то рыба стремится вверх, вследствие компенсаторных движений плавников. Одновременно с различными в том и другом случае компенсаторными движениями плавников происходит соответственно или резорбция или секреция газа в плавательном пузыре (Пучков Н.В., 1954).

Плавательный пузырь помогает рыбе находиться на определенной глубине – той, на которой вес вытесняемой рыбой воды равен весу самой рыбы. Благодаря плавательному пузырю, рыба не тратит дополнительную энергию на поддержание тела на этой глубине.

Рыба лишена возможности произвольно раздувать или сжимать плавательный пузырь. Но зато в стенках пузыря есть нервные окончания, посылающие сигналы в мозг при его сжатии и расширении. Мозг же на основании этой информации отправляет команды исполнительным органам – мышцам, с помощью которых рыба осуществляет движение (www.fishingural.ru).

У некоторых рыб плавательный пузырь несет еще другие функции. Так, например, у карпов имеется своеобразное подвижное соединение между плавательным пузырем и лабиринтом посредством веберовских косточек. Передний отдел плавательного пузыря карпов эластичен и при изменениях атмосферного давления может сильно расширяться. Эти расширения затем предаются на веберовские косточки, а с последних на лабиринт.

Подобные соединения имеются у сомов и особенно выступают у гольцов, у которых весь задний отдел пузыря утерян, равно как и его гидростатическая функция; пузырь при этом заключен в костную капсулу. От кожи с обеих сторон тела тянутся закрытые снаружи перепонкой, наполненные лимфой, каналы и подходят к стенкам плавательного пузыря в том месте, где он свободен от костной капсулы. Изменения давления передаются от кожи через каналы и плавательный пузырь, а от последнего через веберовский аппарат лабиринту. Таким образом, это устройство похоже на барометр анероид, и функцией плавательного пузыря в первую очередь является восприятие изменения атмосферного давления.

У большинства рыб дыхательная функция пузыря не играет значительной роли. То количество кислорода, которое имеется в плавательном пузыре у линей и карпов, как показывают расчеты, могло бы лишь в течение 4 минут покрыть нормальную потребность рыбы в этом газе и, таким образом, не может иметь практического значения для дыхания. Но у некоторых рыб дыхание с помощью плавательного пузыря приобретает важную роль. К подобным рыбам относится, например, собачья рыба (Umbra crameri) , встречающаяся в Европе в районе рек Дуная и Днестра. Она способна обитать в бедной кислородом воде канав и болот. Если этой рыбе находящейся в обычной воде с растениями, воспрепятствовать выходу на поверхность и лишить ее возможности захватывать атмосферный воздух, она погибает от удушья приблизительно через сутки. Опыты показали, что собачья рыба во влажном воздухе без воды может оставаться живой до 9 часов, тогда как в прокипяченной и бедной кислородом воде она погибает уже через 40 минут, если препятствовать захватыванию ею воздуха из атмосферы. Если позволить ей подниматься к поверхности, то содержание в прокипяченной воде собачья рыбка переносит без вреда для себя и только чаще, чем обычно, захватывает воздух.

Наиболее ярко выражено воздушное дыхание у двоякодышащих рыб, которые вместо плавательного пузыря имеют настоящие легкие, очень сходные по своему устройству с легкими амфибий. Легкие двоякодышащих состоят из множества ячеек, в стенках которых расположены гладкие мышцы и обильная сеть капилляров. В отличие от плавательного пузыря, легкие двоякодышащих (а также многоперых) сообщаются с кишечником с его брюшной стороны и снабжаются кровью от четвертой жаберной артерии, в то время как плавательный пузырь прочих рыб получает кровь из кишечной артерии (Пучков Н.В., 1954).

Вопрос №24.

ЗЕМЛЯНЫЕ ПЛОТИНЫ И ДАМБЫ.

Плотины возводят для задержания и подъема уровня воды. Ими перегораживают русла рек, оврагов и балок. Плотины бывают земляные, бетонные, каменные и др. В рыбовод­ных хозяйствах строят в основном земляные плотины с креплени­ем или без крепления откосов. При проектировании плотины ус­танавливают размеры ее основных элементов: ширину гребня, превышение гребня над нормальным подпорным уровнем, укло­ны откосов. Головную плотину строят такой высоты, при которой образуется головной пруд с объемом воды, гарантирующим удов­летворение потребностей хозяйства при постоянном расходе воды. Створ плотины выбирают в наиболее узком месте поймы с плотным водонепроницаемым грунтом, где нет выхода родников и ключей. Ширину гребня плотины определяют, исходя из усло­вий эксплуатации сооружения, но не менее 3 м.

Дамбы возводят при строительстве пойменных прудов. В зави­симости от назначения они бывают контурные, водооградительные и разделительные. Контурные дамбы обваловывают террито­рию поймы, где размещены рыбоводные пруды. Они предназначе­ны для защиты прудов от паводковых вод. Разделительные дамбы устраивают между двумя смежными прудами. Для защиты терри­тории рыбхоза от затопления строят водооградительные дамбы.

В процессе эксплуатации земляные плотины и дамбы могут де­формироваться и разрушаться. Наибольшую опасность при этом представляют фильтрация и накат волны, вследствие чего могут произойти прорывы, оползни и другие разрушения. При сильных волнах откос плотины со стороны господствующих ветров может разрушаться и его дополнительно защищают специальными креп­лениями. Для крепления верховых откосов плотин головных и на­гульных прудов используют сборные и монолитные железобетон­ные плиты и другие крепления. Железобетонные плиты на откосы плотин и дамб укладывают, как правило, при строительстве или реконструкции прудов. Хорошо защищают дамбы и плотины от волн и размыва растущие в прибрежной части прудов тростник и камыш. Верхнюю часть верхового откоса и низовой откос обычно засевают травами (Привезенцев Ю. А., Власов В. А., 2004).

Плотина имеет два откоса – мокрый, обращенный к воде, и противоположный ему – сухой. Уклон откосов зависит от высоты плотины и качества грунта, из которого построена плотина. Мокрый откос устраивают двойным, а у больших плотин головных прудов даже тройным (т. е. основание откоса в 2-3 раза больше его высоты). Для летних категорий прудов мокрый откос лучше строить более пологим, так как он создает мелководную зону, богатую пищевыми организмами для рыб, а в зимовальных прудах этот откос должен быть, наоборот, более крутым во избежание сокращения площади зимовального пруда. Для предохранения от размыва откосы покрывают дерном, высевают на них травы, а в крупных прудах мокрый откос замащивают камнем, укрепляют плетневыми матами, стенками из плетня и т. п. Посадка деревьев на плотинах недопустима, так как корни разрушают плотину, крона затеняет поверхность воды, а листья загрязняют пруд. Кроме того, деревья привлекают к прудам птиц и других врагов рыб.

Продолжительность службы гидротехнических сооружений значительно повышается при правильном и систематическом уходе за ними (moyaribka.ru).

При сильных волнобоях откос плотины со стороны господству­ющих ветров дополнительно защищают специальными крепления­ми. Для крепления верховых откосов плотин нагульных и головных прудов используют железобетонные плиты, хворостяные крепления (Грищенко Л.И., 1999).

Лучший грунт для сооружения плотин и дамб – суглинок со значительной примесью песка. Если использовать только глину, то она при замерзании и последующем оттаивании трескается и пучится. Кроме того, она легко размывается от сильных дождей или в весенний паводок. Плотина, сложенная только из одного песка, фильтрует воду. Не годятся илистые грунты и черноземы, так как они легко размываются и плохо утрамбовываются.

Участок под дамбу или плотину необходимо предварительно подготовить. Для этого следует снять весь растительный слой (дерн), удалить пни, кустарник, деревья и их корни. Если грунт в этом месте сильно фильтрует воду, то роют траншею по оси будущей плотины, углубляясь до более твердого грунта. Траншею заполняют жидкой глиной и тщательно трамбуют (рис. 3).

Рисунок 3 – Устройство плотины с замком: 1 – плотина; 2 – замок

Осадка грунта земляных плотин и дамб обычно составляем 10-15 % общего объема насыпи, но может быть и больше – до 50%, если используется торф. Это надо учитывать при планировании высоты сооружения. Плотина должна возвышаться над уровнем воды на 0,7-1,0 м, дамбы – на 0,3-0,5 м. Гребень плотины должен быть шириной не менее 0,5 м. Чтобы в процессе эксплуатации земляные плотины и дамбы не разрушались, их желательно укрепить (Привезенцев Ю. А., 2000).

Вопрос №49.

ХАРАКТЕРИСТИКА КОМБИКОРМОВ.

Комбикорм – это многокомпонентная смесь различных кор­мовых средств, составленная по научно обоснованным рецептам для обеспечения полноценного кормления животных.

Использование гранулированных комбикормов, совершенствование их качества и водостойкости являются важнейшим источ­ником уменьшения затрат кормов при выращивании рыбы и по­вышения себестоимости продукции.

Комбикорма изготовляют для различных видов рыб, выращи­ваемых в аквакультуре, с учетом их возраста, массы и метода выра­щивания. При создании рецептов комбикормов используют нор­мы физиологической потребности рыб в энергии, питательных и биологически активных веществах (Привезенцев Ю. А., Власов В. А., 2004).

В настоящее время приняты следующие нормативы по питатель­ности и качеству комбикормов для рыб (табл. 1).

Таблица 1 – Количество основных питательных веществ и показатели качества кормов для прудовых рыб, %

Питательные вещества

Радужная форель

сего­летки

товарная рыба

сего­летки

товарная рыба

Сырой протеин

Сырой жир

Безазотистые экстрактивные вещества (БЭВ)

Клетчатка

Энергетическая ценность, тыс. кДж/кг

Йодное число, % йода, не более

Кислотное число, мг КОН, не более

В соответствии с этими требованиями разработаны рецепты комбикормов для разных возрастных групп карпа, радужной форе­ли, канального сома, бестера. По своему назначению они делятся на стартовые (для личинок и мальков) и продукционные (для старших возрастных групп).

Таблица 2 – Характеристика комбикормов (Привезенцев Ю. А., Власов В. А., 2004).

Массовая доля влаги, %, не более

Массовая доля сырого протеина, %, не ниже:

стартовые комбикорма (карп, выращенный в индустриальных

условиях, лососевые, канальный сом) для осетровых

комбикорма, используемые при прудовом выращивании:

сеголетков, ремонтного материала и производителей карпа

товарных двухлетков, трехлетков карпа

комбикорма при индустриальном методе выращивания карпа

комбикорма при выращивании ценных видов рыб

Массовая доля сырого жира для карпа и других ценных видов рыб при индустриальном методе выращивания, %

без добавок жира

с добавками жира

Массовая доля углеводов, %, не более:

стартовые комбикорма для карпа, выращиваемого в индустриальных условиях

стартовые комбикорма для лососевых

стартовые комбикорма для осетровых

Массовая доля клетчатки, %, не более:

стартовые комбикорма дня рыб

продукционные комбикорма для рыб

продукционные комбикорма для сеголетков, ремонтного молодняка и производителей

продукционные комбикорма для товарных двухлетков и трехлетков

Массовая доля кальция для всех видов рыб, %, не более:

стартовые комбикорма

продукционные комбикорма

Массовая доля фосфора, %, не более:

стартовые комбикорма для ценных видов рыб

продукционные комбикорма для ценных видов рыб

стартовые комбикорма для карпа

Водостойкость гранул, мин. не менее

Кислотное число комбикорма, мг КОН, не более

Сроки хранения, мес, не более:

комбикорм для карпа, выращиваемого в прудах:

с введением антиокислителя

без антиокислителя

комбикорм для выращивания рыб в индустриальных условиях:

без добавки жира

с добавками жира

Требования к стартовым кормам отличаются от требований к продукционным повышенным содержанием в них протеина (не менее 45%), жира, энергетической ценностью, а также большей сбалансированностью по аминокислотному составу, витаминам, микроэлементам и другим добавкам (табл.2). Более высокие требования предъявляют в кормам для рыб, выращиваемых в садках и бассей­нах, так как в них рыба практически лишена естественной пищи (Грищенко Л.И., 1999).

Каждому рецепту комбикорма присваивают номер. Согласно Инструкции по приготовлению комбикормов для рыб установле­ны номера со 110-го по 119-й. Вместе с тем существуют модифи­кации временных рецептур.

В последнее время особое внимание стали уделять производ­ству профилактических (лечебных) кормов, содержащих природ­ный энтеросорбент и новые эффективные отечественные пробиотики, которые, с одной стороны, обезвреживают токсиканты, с другой – заселяют организм рыб бактериями – антагонистами патогенных микроорганизмов, возбудителей многих инфекцион­ных болезней рыб (Привезенцев Ю. А., Власов В. А., 2004).

Основные корма, которые используются при приготовлении комбикормов для карпа, представлены в таблице 3.

Таблица 3 – Соотношение ингредиентов в комбикормах для карпа, выращиваемого в прудах, % (Власов, В.А., Скворцова, Е.Г., 2010).

Ингредиенты

Для сеголеток и

производителей

Для двухлеток

1) Жмыхи и шроты (не менее 2 видов)

2) Зерновые:

злаковые

3) Отруби

4) Дрожжи

5) Корма животного происхождения

6) Травяная мука

7) Минеральные добавки

8) Стимуляторы роста

Рыбные комбикорма готовят в виде крупки (стартовые), гранул разного диаметра в соответствии с возрастом рыб, а также тестооб­разные . Гранулированные корма производят в основном централи­зованно на комбикормовых заводах, а тестообразные – непосред­ственно в рыбхозах. Для карповых рыб используют тонущие, а для лососевых рыб – плавающие корма (водостойкость их составляет около 10-20 мин). Лучшие рецепты отечественных и зарубежных рыбных комбикормов содержат до 9-12 различных компонентов, не считая добавок витаминов, минеральных солей и др. В них вхо­дят животные корма, корма растительного происхождения, продук­ты микробиологического синтеза, премиксы, ферментные препа­раты, антиоксиданты, антибиотики (Грищенко Л.И., 1999).

Грану­лированные комбикорма подразделяют на стартовые и продукционные . Их изготовляют в виде крупки и гранул. Крупка предназначена для кормления рыбы от личинок до сеголетков массой 5 г, гранулы – для сеголетков, годовиков, двухлетков, трехлетков, ремонтного материала и производителей. В зависимости от размера крупку и гранулы подразделяют на 10 групп (табл. 4).

Таблица 4 – Характеристика кормов для рыб

Диаметр, мм

Масса рыб, г

лососевые

осетровые

До 0,2 (крупка)

0,2–0,4 (крупка)

0,4–0,6 (крупка)

0,6–1,0 (крупка)

1,0–1,5 (крупка)

1,5–2,5 (крупка)

3,2 (гранулы)

4,5 (гранулы)

6,0 (гранулы)

8,0 (гранулы)

Плавучесть рыб (отношение плотности тела рыбы к плотности воды) может быть нейтральной (0), положительной или отрицательной. У большинства видов плавучесть колеблется от +0,03 до –0,03. При положительной плавучести рыбы всплывают, при нейтральной парят в толще воды, при отрицательной погружаются.

Рис. 10. Плавательный пузырь карповых.

Нейтральная плавучесть (или гидростатическое равновесие) у рыб достигается:

1) при помощи плавательного пузыря;

2) обводнением мышц и облегчением скелета (у глубоководных рыб)

3) накоплением жира (акулы, тунцы, скумбрии, камбалы, бычки, вьюны и т.д.).

Большинство рыб имеют плавательный пузырь. Его возникновение связывают с появлением костного скелета, который увеличивает удельный вес костных рыб. У хрящевых рыб плавательный пузырь отсутствует, из костистых его нет у донных (бычки, камбалы, пинагор), глубоководных и некоторых быстроплавающих видов (тунец, пеламида, скумбрия). Дополнительным гидростатическим приспособлением у этих рыб является подъемная сила, которая образуется за счет мускульных усилий.

Плавательный пузырь образуется в результате выпячивания дорзальной стенки пищевода, его основная функция – гидростатическая. Плавательный пузырь воспринимает также изменения давления, имеет непосредственное отношение к органу слуха, являясь резонатором и рефлектором звуковых колебаний. У вьюновых плавательный пузырь покрыт костной капсулой, утратил гидростатическую функцию, и приобрел способность воспринимать изменения атмосферного давления. У двоякодышащих и костных ганоидов плавательный пузырь выполняет функцию дыхания. Некоторые рыбы способны при помощи плавательного пузыря издавать звуки (треска, мерлуза).

Плавательный пузырь представляет собой относительно большой эластичный мешок, который расположен под почками. Он бывает:

1) непарный (большинство рыб);

2) парный (двоякодышащие и многоперы).

У многих рыб плавательный пузырь однокамерный (лососевые), у некоторых видов двухкамерный (карповые) или трехкамерный (ошибень), камеры между собой сообщаются. У ряда рыб отплавательного пузыря отходят слепые отростки, соединяющие его с внутренним ухом (сельдевые, тресковые и др.).

Плавательный пузырь заполнен смесью кислорода, азота и углекислого газа. Соотношение газов в плавательном пузыре у рыб различается и зависит от вида рыб, глубины обитания, физиологического состояния и др. У глубоководных рыб в плавательном пузыре содержится значительно больше кислорода, чем у видов, обитающих ближе к поверхности. Рыбы с плавательным пузырем делятся на открытопузырных и закрытопузырных. У открытопузырных рыб плавательный пузырь соединяется с пищеводом с помощью воздушного протока. К ним относятся – двоякодышащие, многоперы, хрящевые и костные ганоиды, из костистых – сельдеобразные, карпообразные, щукообразные. У атлантической сельди, шпрота и хамсы помимо обычного воздушного протока имеется второй проток позади анального отверстия, который соединяет заднюю часть плавательного пузыря с внешней средой. У закрытопузырных рыб воздушный проток отсутствует (окунеобразные, трескообразные, кефалеобразные и др.). Первоначальное заполнение плавательного пузыря газами у рыб происходит при заглатывании личинкой атмосферного воздуха. Так, у личинок карпа это имеет место через 1–1,5 суток после вылупления. Если этого не происходит, развитие личинки нарушается и она гибнет. У закрытопузырных рыб плавательный пузырь со временем утрачивает связь с наружной средой, у открытопузырных воздушный проток сохраняется в течение всей жизни. Регулирование объема газов в плавательном пузыре у закрыто пузырных рыб происходит при помощи двух систем:

1) газовая железа (наполняет пузырь газами из крови);

2) овал (поглощает газы из пузыря в кровь).

Газовая железа – система артериальных и венозных сосудов, расположенных в передней части плавательного пузыря. Овал участок во внутренней оболочке плавательного пузыря с тонкими стенками, окруженный мышечным сфинктером, расположен в задней части пузыря. При расслаблении сфинктера газы из плавательного пузыря поступают к среднему слою его стенки, где имеются венозные капилляры и происходит их диффузия в кровь. Количество поглощаемых газов регулируется изменением величины отверстия овала.

При погружении закрытопузырных рыб объем газов в их плавательном пузыре уменьшается, и рыбы приобретают отрицательную плавучесть, но по достижении определенной глубины адаптируются к ней путем выделения газов в плавательный пузырь через газовую железу. При подъеме рыбы, когда давление уменьшается, объем газов в плавательном пузыре увеличивается, избыток их поглощается через овал в кровь, а затем через жабры удаляется в воду. У открытопузырных рыб овала нет, избыток газов выводится наружу через воздушный проток. Большинство открытопузырных рыб не имеют газовой железы (сельдевые, лососевые). Секреция газов из крови в пузырь развита слабо и осуществляется с помощью эпителия, расположенного на внутреннем слое пузыря. Многие открытопузырные рыбы для обеспечения на глубине нейтральной плавучести перед погружением захватывают воздух. Однако при сильных погружениях его бывает недостаточно, и наполнение плавательного пузыря происходит газами, поступающими из крови.

Эта удивительная подушка Гильзин Карл Александрович

Зачем рыбе пузырь?

Зачем рыбе пузырь?

В Латвии есть озеро Илзиня, ничем, кажется, не выделяющееся из множества прибалтийских озер, если бы не расположенный на нем остров. Озерными островами тоже удивить трудно, но этот небольшой остров действительно особенный: он движется. Почему покрытый кустарником и травой остров не тонет? Что превращает его в своеобразный корабль? Воздушная подушка. Остров состоит из торфяного грунта, некогда оторвавшегося от дна, и воздух, а также метан и другие газы, образующиеся при гниении, создают подушку.

Плавающие острова есть на Оби, в Рыбинском море и в других местах.

Как и следовало ожидать, исключительно велика роль плавающей воздушной подушки в живой природе. Ведь столько разнообразных существ живет в воде или так или иначе связаны с ней.

Воздушная подушка рыб - плавательный пузырь - доставляет им немало хлопот: то накачивай пузырь воздухом, то выпускай его. Но зато сколько пользы он приносит!

Пузырь нужен рыбе главным образом для того, чтобы она могла плавать на разных глубинах - ведь давление воды с увеличением глубины увеличивается. Держаться в толще воды без дополнительных движений рыбе и помогает плавательный пузырь. Меняя количество газов в нем, рыба выравнивает давление в пузыре при изменении давления окружающей воды.

Плавательный пузырь рыбы при ее подъеме и спуске то автоматически пополняется газами, которые рыба извлекает из воды или из собственных тканей, то освобождается от них. Эти газы обычно близки по составу к воздуху, но иногда довольно сильно отличаются от него.

Если пузырь соединен с кишечником (например, у щуки, сельди, лосося, сома), то газы выходят через рот в воду. Когда всплывает стая подобных рыб, то сначала из глубины появляется множество пузырьков воздуха. Рыбаки в Адриатическом море говорят: «Пена появилась - сейчас появятся и сардины!»

В случае герметичного пузыря (например, у кефали, наваги, трески) газы сначала поступают в кровь, а уж потом через жабры выводятся в воду. Это, конечно, происходит медленнее, и такие рыбы всплывают не столь быстро. Если вытащить кефаль с большой глубины, то пузырь, давление в котором еще велико, распирает тело рыбы, она раздувается и сама становится вроде пузыря. У акул, которым приходится часто и резко менять глубину плавания, например, в погоне за добычей, плавательного пузыря вообще нет - им он мешал бы.

Есть у плавательного пузыря еще одна важная работа - он измеряет давление окружающей воды. Рыбе нужно знать, на какой глубине она находится - у каждого вида рыб свои излюбленные глубины, где больше пищи и приятнее условия. С помощью пузыря рыба воспринимает самые незначительные колебания давления, например изменение атмосферного давления перед грозой.

Большинство рыб использует плавательный пузырь и как орган слуха. Они слушают сначала животом: пузырь усиливает даже слабые звуки, распространяющиеся в воде, и уже потом они передаются во внутреннее ухо, в голову рыбы.

И пузырем же многие рыбы разговаривают. Старая поговорка «Нем как рыба» уже давно опровергнута наукой: рыбы весьма болтливы. Большинство рыб, оказывается, чревовещатели: они «разговаривают», не открывая рта! Пузырь служит как бы барабаном - рыба ударяет по нему то особыми мышцами, то плавниками, а то и специальной косточкой, вроде палочки барабанщика.

Чем больше барабан, тем басовитей его «голос». Маленькие рыбки попискивают, а большие-басят. И вот что странно: рыбы-самки обычно «беседуют» реже и тише, у них барабанные мышцы развиты слабее. Так что, по одному остроумному замечанию, в отличие от людей, у судаков «судачат» в основном отцы семейства…

Не все издаваемые рыбами звуки исходят из пузыря. У некоторых рыб пузыря вообще нет, а «разговаривают» они вовсю.

Пока никто не знает, почему и как эти рыбы издают звуки: бычки рычат и квакают, белуги ревут…

И еще одно важное свойство пузыря не так для самой рыбы - хозяйки пузыря, как для других рыб. Когда рыба гибнет - попадает в зубы хищнику, в сеть или на крючок рыболова, то она извивается, трепещет, и ее пузырь, сильно сжимаясь, издает как бы крик боли, предупреждающий других рыб об опасности. Рыба горбыль, например, кричит так, что за двести метров слышно.

Пузырь служит для издавания звуков не только у рыб. Есть подобный пузырь - он так и называется «голосовым» - у самцов лягушек. Если это наземная лягушка, то пузырь находится внутри тела, если водяная, то снаружи, по бокам головы. Ну и страшилищем выглядит лягушка, когда эти пузыри надуваются!

Пузырь некоторым рыбам служит и для дыхания: они заглатывают в него атмосферный воздух, хотя, как и все остальные рыбы, они жабрами извлекают кислород, растворенный в воде. И если такая рыба не успеет наполнить свой пузырь воздухом, когда высунет голову из воды (она делает это регулярно, обычно через один - три часа), то она утонет.

«Запасенным» воздухом дышат не только рыбы, но и некоторые насекомые. Например, жук-плавунец запасает атмосферный воздух в дыхательных трахеях и специальных пузырьках под надкрыльями и дышит этим воздухом под водой. Природа позаботилась и о том, чтобы жук мог жить под водой долго - например, зимой подо льдом. Запасенный жуком пузырек воздуха, покрывающий его дыхальца, служит своеобразными жабрами: по мере расходования кислород поступает в пузырек из окружающей воды, а углекислый газ, наоборот, отводится в воду - ведь он растворяется в воде в тридцать раз лучше, чем кислород.

Из книги Тайны лунной гонки автора Караш Юрий Юрьевич

Зачем Соединенным Штатам нужно было сотрудничество с СССР? Вопрос не праздный. Разве американцы в меньшей степени, чем русские, были озабочены возможностью «перетекания» своих современных технологий двойного использования в руки тех, кто мог обратить их против

Из книги Засады, подставы и другие хитрости инспекторов ГИБДД автора Кузьмин Сергей

Зачем дальним моргали, уважаемый водитель? Для чего водители встречных автомобилей двумя дальними моргают, мы знаем. Знают это и сотрудники ГИБДД. И ох как им это не нравится! В общем-то и сделать они ничего не могут, но все- таки пытаются. Так же как водитель предупреждает

Из книги Покорители земных недр автора Блинов Геннадий Александрович

Зачем нужно бурение Где оно используется и применяется? Недаром мы начали с геологической эмблемы. Действительно, геология, а точнее геологоразведка, является самой мощной, самой развитой ветвью раскидистого бурового дерева (рис. 5). Собственно в геологии это дерево

Из книги Создаем робота-андроида своими руками автора Ловин Джон

Зачем создавать роботов? Применение роботов оказалось совершенно необходимым для многих производств, прежде всего потому, что стоимость «труда» робота оказалось значительно ниже стоимости такой же операции, производимой работником – человеком. Более того, робота

Из книги Феномен науки [Кибернетический подход к эволюции] автора Турчин Валентин Фёдорович

3.4. Зачем нужны ассоциации представлений Эти предварительные соображения нам потребовались для того, чтобы лучше уяснить понятие ассоциации и связь между функциональным описанием через ассоциации и структурным - через классификаторы.Поскольку с каждым

Из книги Об изобретательстве понятным языком и на интересных примерах автора Соколов Дмитрий Юрьевич

Глава 1 Что такое изобретение, и зачем они нужны Jus utendi et abutendi. Право пользования по своему усмотрению. (Римское право) Условия патентоспособности изобретения описаны в ст. 1350 четвертой части Гражданского кодекса РФ. Я не буду повторять эту статью, а постараюсь ее «на

Из книги Электронные фокусы для любознательных детей автора Кашкаров Андрей Петрович

1.5.1. Зачем нужны светодиоды? Светодиоды заменяют большинство из бытовых осветительных приборов. Причем заменяют эффективно по нескольким причинам.Во-первых, светодиод очень экономичен. Так один, даже сверх-яркий светодиод с силой света до 5 кД (Кандел) потребляет всего

Из книги 100 великих достижений в мире техники автора Зигуненко Станислав Николаевич

Зачем трактору «тапочки»? Колесо или гусеница? Такая альтернатива уже давно стоит перед специалистами сельскохозяйственного тракторостроения. Дело в том, что нынешние тяжелые трактора изрядно калечат почву своими гусеницами, прикатывают ее, будто дорогу. И порою даже

Из книги Могло быть и хуже… автора Кларксон Джереми

Зачем сеть на картофельном поле? Есть картошку многие любят, а вот убирать… Нелегкая это работа – нагнуться за каждым клубнем, поднять его и опустить в ведро. За день так намаешься, что уж и картошечке на столе не рад. А нельзя ли как-то облегчить уборку картофеля? Конечно,

Из книги автора

Зачем паспорт корове? Зоологи и ветеринары научились различать телят крупного рогатого скота по отпечаткам их носа. Оказывается, они столь же индивидуальны, как и отпечатки пальцев у людей. Но зачем вообще необходимо различать животных, скажем, на крупной ферме? Ведь все

Из книги автора

Зачем ткани интеллект? Некогда всемирно известный модельер В. Зайцев начал свою карьеру дизайнера с того, что предложил выпускать телогрейки, украшенные цветами и разными узорами. Недавняя международная специализированная выставка производственной одежды

Из книги автора

Ferrari 4 – зачем? Ferrari FF Было обычное субботнее утро, дороги были переполнены любителями ремонта своими руками, которые вместе с семьями направлялись в соответствующие местные магазины. Когда спешишь, это не самое лучшее, что может случиться: человек, который

Рассказа о плавательном пузыре речь в основном шла о его положении относительно кишечника у разных групп рыб, а также о путях возможной эволюции от первичного вентрального легкого древних рыб к настоящему дорзальному плавательному пузырю рыб современных. Сегодня мы более подробно рассмотрим внутреннее устройство этого органа и еще раз вернемся к разнообразию его строения.

Ранее мы отметили, что в эволюции рыб от предковых (зачастую примитивных) к современным более сложно устроенным формам наблюдается тенденция, во-первых, к потере связи плавательного пузыря с кишечником и, во-вторых, к общему усложнению его строения. Действительно, наиболее молодые таксоны являются, как правило, закрытопузырными, в то время как у более старших (имеющих более раннее эволюционное происхождение) наблюдается открытопузырность.

Схема строения плавательного пузыря рыб

Переход от открытопузырности к закрытопузырности проходил в эволюции посредством постепенного утоньшения и удлинения воздушного канала и смещения места его соединения с пищеварительным трактом от глотки в задние отделы кишечника. Так, у современных открытопузырных рыб этот канал длинный и узкий, как, например, у лососевых, и открывается за желудком, а у панцирной щуки Lepisosteus - представителя одной из древних групп - он короткий и широкий, и открывается в пищевод. Такое его "переднее" положение укорачивает путь в плавательный пузырь для заглатываемого с поверхности воды воздуха и обеспечивает дыхательную функцию.

Принципы работы плавательного пузыря

Вначале поговорим о принципе работы плавательного пузыря как гидростатического органа. Этот принцип прост: изменяя объем плавательного пузыря, рыба изменяет общую плотность тела, и как следствие меняется и ее плавучесть. Как же происходит изменение объема плавательного пузыря? Первые исследователи считали, что это осуществляется только за счет окружающей плавательный пузырь мускулатуры, работа которой приводит к его сжиманию или растягиванию, что в свою очередь выгоняет воздух из пузыря или наоборот нагнетает его внутрь. Однако это не верно - изменение объема плавательного пузыря исключительно за счет работы мускулатуры свойственно лишь немногим примитивным мелководным формам. У подавляющего большинства рыб для этого используются специализированные внутренние структуры, расположенные в самом пузыре, в то время как мускулатура задействуется в крайних случаях. Эти структуры в зависимости от продвинутости таксона могут быть выражены в разной степени, но при этом всегда различают два их типа - красное тело и овал. Фактически это две зоны в оболочке плавательного пузыря, выполняющие функции синтеза (красное тело) и удаления (овал) газов. Функционирование этих зон связано с обильным кровообращением, так как кровь является для большинства рыб основным, а в случае закрытопузырных рыб единственным транспортным "каналом" для газов при наполнении и опорожнении плавательного пузыря.

Теперь давайте немного подробнее рассмотрим строение этих двух "рабочих" зон.

Строение красного тела

Начнем с красного тела (лат. corpus ruber) , которое по сути является газовой железой (а в англоязычной литературе оно преимущественно называется именно так), служащей для «закачки» газов из крови в полость плавательного пузыря. Оно представляет собой скопление секреторных клеток (вероятно эпителиального происхождения) и капилляров. У разных групп рыб красное тело может быть выражено неодинаково – оно может покрывать либо всю поверхность пузыря, либо только небольшую его часть, иметь лопастную структуру или представлять собой однородное образование, быть выстланным многослойным или однослойным эпителием.

Красное тело внешне выглядит как густое скопление копилляров

Сейчас я не стану останавливаться на подробностях работы всей системы, но для дальнейшего понимания строения красного тела необходимо отметить, что попадание газов напрямую из крови в плавательный пузырь путем простой диффузии невозможно из-за разницы их парциальных давлений. Для преодоления этой разницы как раз и необходимы секреторные клетки, которые за счет происходящих в них химических реакций обеспечивают транспорт газов в нужном направлении. Для синтеза необходимого объема газов секреторные клетки должны соответствующим образом снабжаться кровью, которая как раз и является источником этих газов. Поэтому важнейшей составляющей красного тела является скопление капилляров, образующих густую сеть в стенке плавательного пузыря и получившее довольно смешное и кажущееся не совсем научным название – чудесная сеть от латинского rete mirabile. Как уже отмечалось выше, у разных видов рыб чудесная сеть, как неотъемлемая часть красного тела, может быть развита в разной степени, однако, если имеется, то построена по одному универсальному принципу. Этот принцип заключается в очень близком расположении капилляров, приносящих кровь к секреторным клеткам и уносящих ее обратно. По этим сближенным артериальным и венозным капиллярам происходит параллельный (но разнонаправленный) транспорт крови, что обеспечивает сложный механизм нагнетания парциального давления газов в приносящих капиллярах и саму возможность "закачки" газов внутрь плавательного пузыря. Подробнее об этом я попробую рассказать в отдельном посте, пока же предлагаю только взглянуть на рисунок ниже, на котором показана микроструктура чудесной сети и пути газов в разных ее частях.

Микроструктура чудесной сети и разность парциальных давлений газов в разных ее участках.

Стрелками показано направление газов и кровотока.

Два типа организации чудесной сети

Говоря о строении чудесной сети, нельзя не упомянуть о том, что существует два типа организации параллельных приносящих и выносящих капилляров. Чудесная сеть может быть биполярной, когда две микросети капилляров расположены последовательно, или униполярной, когда имеется лишь одна микросеть капилляров, непосредственно примыкающая к секреторным клеткам. Эти варианты строения показаны на рисунке ниже. У большинства рыб чудесная сеть построена по униполярному типу, в то время как у угрей она биполярна. Различия в строении чудесной сети проявляются также и в том, что число пар капилляров (1 приносящий + 1 выносящий) в микросети может варьировать у разных видов от единиц до нескольких тысяч.

Униполярный и биполярный типы строения чудесной сети

Строение овала

Теперь перейдем к строению овала, являющегося структурой, ответственной за транспорт газов из плавательного пузыря в кровь. Овал представляет собой участок стенки плавательного пузыря, обильно снабжающийся сосудами, также как и в случае с красным телом, образующими густую сеть. Структура этой сети, однако, гораздо проще, так как механизм обратного транспорта газов из плавательного пузыря в кровь значительно проще. Из-за разности парциальных давлений газы проникают в кровь по принципу прямой диффузии, поэтому для обеспечения этого процесса не требуются никакие секреторные клетки и организация параллельного транспорта в капиллярах. Скорость этой диффузии, как правило, очень высокая и ограничивается, прежде всего, скоростью кровотока - кровь попросту не успевает уносить растворенные газы. Кроме того, процесс диффузии связан с площадью, через которую она происходит, и диаметром просвета между резорбирующей и секреторной частями, который, как уже было сказано, может регулироваться с помощью сфинктера.

Капилляры овала (показаны стрелкой)

Разнообразие строения плавательного пузыря костистых рыб

В завершении, как я и обещал, вернемся к разнообразию строения плавательного пузыря у разных групп рыб. Потеря связи с кишечником, как уже было сказано, - не единственная тенденция в эволюции плавательного пузыря. От примитивных древних групп к наиболее современным молодым таксонам мы наблюдаем постепенное усложнение его строения. Это усложнение заключается прежде всего в появлении различных зон, связанных с выполнением тех или иных специальных функций. Гидростатическую функцию обеспечивают две таких зоны - это уже описанные выше красное тело и овал. Их обособление у разных рыб может быть организовано по-разному, но в общем сводится к разделению плавательного пузыря на несколько камер. Как правило, таких камер бывает две - в одной происходит синтез газов, а в другой их поглощение. Разнообразие строения и расположения камер относительно друг друга у костистых рыб очень велико. Некоторые примеры показаны на рисунке ниже.

При описании плавательного пузыря часто отдельно упоминают плавательный пузырь угрей родов Anguilla и Conger (рисунок D). Действительно, в его строении есть ряд интересных особенностей. Имея связь с кишечником, он, однако, функционирует как плавательный пузырь закрытого типа. В чем же это проявляется? Дело в том, что воздушный канал у угрей этих родов расширен и функционально соответствует зоне овала - через его стенки происходит резорбция газов в кровь, синтез же газов осуществляется в единственной крупной вытянутой камере, снабженной мощной газовой железой. Помимо этого, с плавательным пузырем закрытого типа его сближает особенность кровообращения и состав наполняющих газов.

Говоря о разнообразии строения плавательного пузыря и особенностях его связи с внешней средой нельзя не упомянуть о плавательном пузыре сельдевых (сем. Clupeidae). Особенности его строения связаны с особенностями биологии этих рыб, которым свойственны значительные и резкие вертикальные миграции. Так, типичный представитель сельдевых тихоокеанская сельдь Clupea pallasii совершает подобные миграции из глубин моря в поверхностные слои вслед за планктоном, которым она питается. При таких перемещениях объем газа в плавательном пузыре резко увеличивается за счет снижения внешнего давления, что в обычном случае могло бы привести к повреждению тканей рыбы (нечто подобное мы наблюдаем при ловле рыб с глубины - часто такие поимки сопровождаются выпячиванием плавательного пузыря через рот рыбы). Чтобы такого не происходило, в процессе эволюции сельди приобрели дополнительное отверстие, расположенное в районе анального и соединяющее плавательный пузырь с внешней средой. Через него и происходит "стравливание" лишнего воздуха, причем этот процесс может контролироваться самой рыбой с помощью имеющегося здесь сфинктера.

Подробнее о функционировании плавательного пузыря я расскажу в одном из следующих постов.

Казалось бы, ответ на этот вопрос очевиден: чтобы плавать, а точнее, чтобы оставаться на необходимой глубине. Пузырь для рыбы нечто наподобие природного гидростатического датчика.

Вниз или вверх

Когда рыба пускается на глубину, давление воды на ее тело сразу возрастает, плавательный пузырь начинает сжиматься и выталкивает из себя воздух. Происходит это «автоматически», то есть рыбы самостоятельно не управляют процессом. Количество воздуха внутри тела уменьшается и рыбешке почти не приходится прилагать усилий, чтобы погружаться на глубину.

Когда рыба поднимается вверх, все происходит с точностью наоборот. Давление воды на тело спадает и пузырь постепенно наполняется газом, если рыбка остановится, пузырь будет способен без усилий удерживать ее на нужной глубине.

Нервные окончания, которые пронизывают плавательный орган, передают импульсы центральной нервной системе, и рыба чувствует: на какой находится глубине и какое давление испытывает, в связи с чем может скорректировать свое передвижение.

Откуда берется газ и какой?

В зависимости от типа плавательного пузыря взрослых рыб делят на две группы: закрытопузырные и открытопузырные. У первых пузырь наполняется газами из крови и отдает их также в сосуды, через особую сеть капилляров на тонкой стенке. У открытопузырных рыб пузырь является отдельным органом и наполняется после заглатывания рыбой атмосферного воздуха.

Что же касается газа, который заполняет пузырь, то в основном это кислород, углеводород и некоторое количество азота.

Другая функция пузыря

Многие ихтиологи не согласятся с утверждением о том, что рыбы «образцы» молчаливости, ведь они могут и подают особые сигналы себе подобным, преобразуя звуковые волны из колебаний воды, а делают они это с помощью плавательного пузыря.

У каких рыб нет пузыря?

Не все рыбы обзавелись этим полезным органом, у парусниковых, многих глубоководных и донных рыб пузыря нет, да и зачем он им нужен, если они никогда не пытаются всплыть на поверхность.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!