Упражнения. Питание. Диеты. Тренировки. Спорт

Из какой ткани состоят скелетные мускулы. Классификация скелетных мышц

СКЕЛЕТНЫЕ МЫШЦЫ

В теле человека различают три вида мышечной ткани: скелетная (поперечнополосатая), гладкая и мышца сердца. Здесь будут разобраны скелетные мышцы, которые формируют мускулатуру опорно-двигательного аппарата, составляют стенки нашего тела и некоторых внутренних органов (пищевода, глотки, гортани). Если всю мышечную ткань принять за 100%, то на долю скелетных мышц приходится более половины (52%), гладкая мышечная ткань составляет 40%, сердечная мышца – 8%. Масса скелетных мышц с возрастом нарастает (до зрелого возраста), а у пожилых людей мышцы атрофируются, так как имеет место функциональная зависимость массы мышц от их функции. У взрослого человека скелетные мышцы составляют 40-45% от общей массы тела, у новорожденного – 20-24%, у стариков – 20-30%, а у спортсменов (особенно представителей скоростно-силовых видов спорта) – 50% и более. Степень развития мускулатуры зависит от особенностей конституции, пола, профессии и других факторов. У спортсменов степень развития мускулатуры определяется характером двигательной деятельности. Систематические физические нагрузки приводят к структурной перестройке мышц, увеличению их массы и объема. Этот процесс перестройки мышц под влиянием физической нагрузки называют функциональной (рабочей) гипертрофией. Физические упражнения, связанные с различными видами спорта, вызывают рабочую гипертрофию тех мышц, которые оказываются наиболее нагруженными. Правильно дозированные физические упражнения вызывают пропорциональное развитие мускулатуры всего тела. Активная деятельность мышечной системы оказывает влияние не только на мышцы, она приводит также к перестройке костной ткани и соединений костей, влияет на внешние формы человеческого организма и его внутреннюю структуру.

Вместе с костями мышцы составляют опорно-двигательный аппарат. Если кости его пассивная часть, то мышцы являются активной частью аппарата движения.

Функции и свойства скелетных мышц. Благодаря мышцам возможно все многообразие движений между звеньями скелета (туловищем, головой, конечностями), перемещение тела человека в пространстве (ходьба, бег, прыжки, вращения и т. п.), фиксация частей тела в определенных положениях, в частности сохранение вертикального положения тела.

С помощью мышц осуществляются механизмы дыхания, жевания, глотания, речи, мышцы влияют на положение и функцию внутренних органов, способствуют току крови и лимфы, участвуют в обмене веществ, в частности теплообмене. Кроме того, мышцы – один из важнейших анализаторов, воспринимающих положение тела человека в пространстве и взаиморасположение его частей.

Скелетная мышца обладает следующими свойствами:

1) возбудимостью – способностью отвечать на действие раздражителя;

2) сократимостью – способностью укорачиваться или развивать напряжение при возбуждении;

3) эластичностью – способностью развивать напряжение при растягивании;

4) тонусом – в естественных условиях скелетные мышцы постоянно находятся в состоянии некоторого сокращения, называемого мышечным тонусом, который имеет рефлекторное происхождение.

Роль нервной системы в регуляции деятельности мышц. Основным свойством мышечной ткани является сократимость. Сокращение и расслабление скелетных мышц подчиняется воле человека. Сокращение мышцы вызывается импульсом, идущим из центральной нервной системы, с которой каждая мышца связана нервами, содержащими чувствительные и двигательные нейроны. По чувствительным нейронам, являющимся проводниками “мышечного чувства”, передаются импульсы от рецепторов кожи, мышц, сухожилий, суставов в центральную нервную систему. По двигательным нейронам проводятся импульсы от спинного мозга к мышце, в результате чего мышца сокращается, т.е. сокращения мышц в организме совершаются рефлекторно. В то же время на двигательные нейроны спинного мозга влияют импульсы из головного мозга, в частности из коры больших полушарий. Это делает движения произвольными. Сокращаясь, мышцы приводят в движение части тела, обусловливают перемещение организма или поддержание определенной позы. К мышцам также подходят симпатические нервы, благодаря которым мышца в живом организме всегда находится в состоянии некоторого сокращения, называемого тонусом. При выполнении спортивных движений в кору головного мозга поступает поток импульсов о месте и степени напряжения тех или иных групп мышц. Возникающее при этом ощущение частей своего тела, так называемое “мышечно-суставное чувство”, является очень важным для спортсменов.

Мышцы тела следует рассматривать с точки зрения их функции, а также топографии групп, в которые они складываются.

Мышца как орган. Строение скелетной мышцы. Каждая мышца является отдельным органом, т.е. целостным образованием, имеющим свою определенную, присущую только ему форму, строение, функцию, развитие и положение в организме. В состав мышцы как органа входят поперечнополосатая мышечная ткань, составляющая ее основу, рыхлая и плотная соединительная ткань, сосуды, нервы. Однако преобладающей в ней является мышечная ткань, основное свойство которой – сократимость.

Рис. 69. Строение мышцы :

1- мышечное брюшко; 2,3-сухожильные концы;

4-поперечно полосатое мышечное волокно.

Каждая мышца имеет среднюю часть, способную сокращаться и называемую брюшком , и сухожильные концы (сухожилия), не обладающие сократимостью и служащие для прикрепления мышц (рис. 69).

Брюшко мышцы (рис. 69-71) содержит различной толщины пучки мышечных волокон. Мышечное волокно (рис. 70, 71) представляет собой пласт цитоплазмы, содержащий ядра и покрытый оболочкой.

Рис. 70. Строение мышечного волокна.

Наряду с обычными составляющими клетки в цитоплазме мышечных волокон содержатся миоглобин , обусловливающий цвет мышц (белые или красные) и органеллы специального значения – миофибриллы (рис. 70), составляющие сократительный аппарат мышечных волокон. Миофибриллы состоят из двух видов белков – актина и миозина. Реагируя на нервный сигнал, молекулы актина и миозина вступают в реакцию, вызывая сокращение миофибрилл, а, следовательно, и мышцы. Отдельные участки миофибрилл неодинаково преломляют свет: одни из них в двух направлениях – темные диски, другие только в одном – светлые диски. Такое чередование темных и светлых участков в мышечном волокне и обусловливает поперечную исчерченность, откуда мышца и получила название – поперечнополосатая . В зависимости от преобладания в мышце волокон с высоким или низким содержанием миоглобина (красный мышечный пигмент) различают мышцы красные и белые (соответственно). Белые мышцы обладают высокой сократительной скоростью и возможностью развивать большую силу. Красные волокна сокращаются медленно и отличаются хорошей выносливостью.



Рис. 71. Строение скелетной мышцы.

Каждое мышечное волокно окутано соединительнотканной оболочкой – эндомизием , содержащей сосуды и нервы. Группы мышечных волокон, объединяясь между собой, образуют мышечные пучки, окруженные уже более толстой соединительнотканной оболочкой, называемой перимизием . Снаружи брюшко мышцы одето еще более плотным и прочным покровом, который называется фасцией , образованной плотной соединительной тканью и имеющей довольно сложное строение (рис.71). Фасции делятся на поверхностные и глубокие. Поверхностные фасции лежат непосредственно под подкожным жировым слоем, образуя для него своеобразный футляр. Глубокие (собственные) фасции покрывают отдельные мышцы или группы мышц, а также образуют влагалища для сосудов и нервов. Благодаря наличию соединительнотканных прослоек между пучками мышечных волокон, мышца может сокращаться не только целиком, но и отдельной частью.

Все соединительнотканные образования мышцы с мышечного брюшка переходят на сухожильные концы (рис. 69, 71), которые состоят из плотной волокнистой соединительной ткани.

Сухожилия в организме человека формируются под влиянием величины мышечной силы и направления ее действия. Чем больше эта сила, тем сильнее разрастается сухожилие. Таким образом, у каждой мышцы характерное для нее (как по величине, так и по форме) сухожилие.

Сухожилия по цвету резко отличаются от мышц. Мышцы имеют красно-бурый цвет, а сухожилия белые, блестящие. Форма сухожилий мышц весьма разнообразна, но чаще встречаются сухожилия длинные узкие или плоские широкие (рис. 71, 72, 80). Плоские, широкие сухожилия носят названия апоневрозов (мышцы живота и др.), их, в основном, имеют мышцы, участвующие в образовании стенок брюшной полости. Сухожилия очень прочны и крепки. Например, пяточное сухожилие выдерживает нагрузку около 400 кг, а сухожилие четырехглавой мышцы бедра – 600 кг.

Сухожилия мышцы фиксируются или прикрепляются. В большинстве случаев они прикрепляются к костным звеньям скелета, подвижным по отношению друг к другу, иногда к фасциям (предплечья, голени), к коже (в области лица) или к органам (мышцы глазного яблока). Один конец сухожилия является началом мышцы и называется головкой , другой – местом прикрепления и называется хвостом . За начало мышцы обычно принимается ее проксимальный конец (проксимальная опора), расположенный ближе к срединной линии тела или к туловищу, за место прикрепления – дистальная часть (дистальная опора), расположенная дальше от указанных образований. Место начала мышцы считают неподвижной (фиксированной) точкой, место прикрепления мышцы подвижной точкой. При этом имеют в виду наиболее часто наблюдаемые движения, при которых дистальные звенья тела, находящиеся дальше от тела, более подвижны, чем проксимальные, лежащие ближе к нему. Но встречаются движения, при которых бывают закреплены дистальные звенья тела (например, при выполнении движений на спортивных снарядах), в этом случае проксимальные звенья приближаются к дистальным. Поэтому мышца может совершать работу или при проксимальной, или при дистальной опоре.

Мышцы, будучи органом активным, характеризуются интенсивным обменом веществ, хорошо снабжены кровеносными сосудами, которые доставляют кислород, питательные вещества, гормоны и уносят продукты мышечного обмена и углекислый газ. В каждую мышцу кровь поступает по артериям, протекает в органе по многочисленным капиллярам, а оттекает из мышцы по венам и лимфатическим сосудам. Ток крови через мышцу непрерывен. Однако количество крови и число капилляров, пропускающих ее, зависят от характера и интенсивности работы мышцы. В состоянии относительного покоя функционирует примерно 1 / 3 капилляров.

Классификация мышц. В основу классификации мышц положен функциональный принцип, так как величина, форма, направление мышечных волокон, положение мышцы зависят от выполняемой ею функции и совершаемой работы (табл. 4).

Таблица 4

Классификация мышц

1. В зависимости от места расположения мышц их подразделяют на соответствующие топографические группы : мышцы головы, шеи, спины, груди, живота, мышцы верхних и нижних конечностей.

2. По форме мышцы очень разнообразны: длинные, короткие и широкие, плоские и веретенообразные, ромбовидные, квадратные и т.п. Эти различия связаны с функциональным значением мышц (рис. 72).

Рис 72. Форма скелетных мышц:

а-веретенообразная, б-двуглавая, в-двубрюшная, г-лентовидная, д-двуперистая, е-одноперистая: 1-брюшко мышцы, 2-сухожилие, 3-промежуточное сухожилие, 4-сухожильные перемычки.

В длинных мышцах продольный размер превалирует над поперечным. Они имеют незначительную площадь прикрепления к костям, расположены в основном на конечностях и обеспечивают значительную амплитуду их движений (рис. 72а).

У коротких мышц продольный размер лишь немного больше поперечного. Они встречаются на тех участках тела, где размах движений невелик (например, между отдельными позвонками, между затылочной костью, атлантом и осевым позвонком).

Широкие мышцы находятся преимущественно в области туловища и поясов конечностей. Эти мышцы имеют пучки мышечных волокон, идущих в разных направлениях, сокращаются как целиком, так и своими отдельными частями; у них значительная площадь прикрепления к костям. В отличие от других мышц они обладают не только двигательной функцией, но также опорной и защитной. Так, мышцы живота помимо участия в движениях туловища, акте дыхания, при натуживании, укрепляют стенку живота, способствуя удержанию внутренних органов. Встречаются мышцы, имеющие индивидуальную форму, трапециевидная, квадратная мышца поясницы, пирамидальная.

Большинство мышц имеет одно брюшко и два сухожилия (головку и хвост, рис. 72а). Некоторые длинные мышцы имеют не одно, а два, три или четыре брюшка и соответствующее им количество сухожилий, начинающихся или заканчивающихся на различных костях. В одних случаях такие мышцы начинаются проксимальными сухожилиями (головками) от разных костных точек, а затем сливаются в одно брюшко, которое прикрепляется одним дистальным сухожилием – хвостом (рис. 72б). Например, двуглавая и трехглавая мышцы плеча, четырехглавая мышца бедра, икроножная мышца. В других случаях мышцы начинаются одним проксимальным сухожилием, а брюшко заканчивается несколькими дистальными сухожилиями, прикрепляющимися к разным костям (сгибатели и разгибатели пальцев кисти и стопы). Встречаются мышцы, где брюшко разделено одним промежуточным сухожилием (двубрюшная мышца шеи, рис. 72в) или несколькими сухожильными перемычками (прямая мышца живота, рис. 72г).

3. Существенное значение для работы мышц имеет направление их волокон. По направлению волокон , обусловленному функционально, различают мышцы с прямыми, косыми, поперечными и круговыми волокнами. В прямых мышцах мышечные волокна расположены параллельно длиннику мышцы (рис. 65 а, б, в, г). Эти мышцы обычно длинные и не обладают большой силой.

Мышцы с косым направлением волокон могут прикрепляться к сухожилию с одной стороны (одноперистые, рис. 65е) либо с двух сторон (двуперистые, рис. 65д). При своем сокращении эти мышцы могут развивать значительную силу.

Мышцы, имеющие круговые волокна , располагаются вокруг отверстий и при своем сокращении суживают их (например, круговая мышца глаза, круговая мышца рта). Эти мышцы называются сжимателями или сфинктерами (рис. 83). Иногда мышцы имеют веерообразный ход волокон. Чаще это широкие мышцы, располагающиеся в области шаровидных суставов и обеспечивающие разнообразие движений (рис. 87).

4. По положению в теле человека мышцы делятся на поверхностные и глубокие , наружные и внутренние , медиальные и латеральные .

5. По отношению к суставам , через которые (один, два или несколько) перекидываются мышцы, различают мышцы одно-, двух- и многосуставные. Односуставные мышцы фиксируются к соседним костям скелета и переходят через один сустав, а многосуставные мышцы переходят через два и более суставов, производя движения в них. Многосуставные мышцы как более длинные располагаются поверхностнее односуставных. Перекидываясь через сустав, мышцы имеют определенное отношение к осям его движения.

6. По выполняемой функции мышцы делятся на сгибатели и разгибатели, отводящие и приводящие, супинаторы и пронаторы, поднимающие и опускающие, жевательные и др.

Закономерности положения и функции мышц . Мышцы перебрасываются через сустав, они имеют определенное отношение к оси данного сустава, чем и обусловливается функция мышцы. Обычно мышца перекрывает ту или другую ось под прямым углом. Если мышца лежит впереди сустава, то она вызывает сгибание, сзади – разгибание, медиально – приведение, латерально – отведение. Если мышца лежит вокруг вертикальной оси вращения сустава, то она вызывает вращение вовнутрь или наружу. Поэтому, зная сколько и какие движения возможны в данном суставе, всегда можно предугадать, какие по функции залегают мышцы и где они расположены.

Мышцы обладают энергичным обменом веществ, который еще более повышается при увеличении работы мышцы. При этом к мышце увеличивается приток крови по сосудам. Усиленная функция мускулатуры вызывает улучшение питания и увеличение массы мышцы (рабочая гипертрофия). При этом увеличивается абсолютная масса и размер мышцы за счет увеличения мышечных волокон. Физические упражнения, связанные с различными видами труда и спорта, вызывают рабочую гипертрофию тех мышц, которые оказываются наиболее нагруженными. Нередко по фигуре спортсмена можно сказать, каким видом спорта он занимается – плаванием, легкой или тяжелой атлетикой. Гигиена труда и спорта требует универсальной гимнастики, которая способствует гармоничному развитию тела человека. Правильные физические упражнения вызывают пропорциональное развитие мускулатуры всего тела. Так как усиленная работа мышц оказывает влияние на обмен веществ всего организма, то физическая культура является одним из мощных факторов благоприятного влияния на него.

Вспомогательный аппарат мышц. Мышцы, сокращаясь, выполняют свою функцию при участии и при помощи ряда анатомических образований, которые следует рассматривать как вспомогательные. К вспомогательному аппарату скелетных мышц относятся сухожилия, фасции, межмышечные перегородки, синовиальные сумки и влагалища, мышечные блоки, сесамовидные кости.

Фасции покрывают как отдельные мышцы, так и группы мышц. Различают поверхностные (подкожные) и глубокие фасции. Поверхностные фасции лежат под кожей, окружая всю мускулатуру данной области. Глубокие фасции покрывают группу мышц-синергистов (т.е. выполняющих однородную функцию) или каждую отдельную мышцу (собственная фасция). От фасций вглубь отходят отростки – межмышечные перегородки. Они отделяют друг от друга группы мышц и прикрепляются к костям.

Удерживатели сухожилий располагаются в области некоторых суставов конечностей. Они представляют собой лентообразные утолщения фасций и располагаются поперечно над сухожилиями мышц подобно ремням, фиксируя их к костям.

Синовиальные сумки – тонкостенные соединительнотканные мешочки, заполненные жидкостью похожей на синовию и расположенные под мышцами, между мышцами и сухожилиями или костью. Они уменьшают трение.

Синовиальные влагалища развиваются в тех местах, где сухожилия прилегают к кости (т. е. в костно-фиброзных каналах). Это замкнутые образования, в виде муфты или цилиндра охватывающие сухожилие. Каждое синовиальное влагалище состоит из двух листков. Один листок, внутренний, охватывает сухожилие, а второй, наружный, выстилает стенку фиброзного канала. Между листками находится небольшая щель, заполненная синовиальной жидкостью, облегчающей скольжение сухожилия.

Сесамовидные кости располагаются в толще сухожилий, ближе к месту их прикрепления. Они изменяют угол подхода мышцы к кости и увеличивают плечо силы мышцы. Самой крупной сесамовидной костью является надколенник.

Вспомогательный аппарат мышц образует дополнительную опору для них – мягкий скелет, обусловливает направление тяги мышц, способствует их изолированному сокращению, не дает смещаться при сокращении, увеличивает силу мышц и способствует кровообращению и лимфооттоку.

Выполняя многочисленные функции, мышцы работают согласованно, образуя функциональные рабочие группы . Мышцы включаются в функциональные группы по направлению движения в суставе, по направлению движения части тела, по изменению объема полости и по изменению размера отверстия.

При движениях конечностей и их звеньев выделяют функциональные группы мышц – сгибающие, разгибающие, отводящие и приводящие, пронирующие и супинирующие.

При движении туловища различают функциональные группы мышц – сгибающие и разгибающие (наклоняющие вперед и назад), наклоняющие вправо или влево, поворачивающие вправо или влево. По отношению к движению отдельных частей тела выделяют функциональные группы мышц, поднимающие и опускающие, осуществляющие движение вперед и назад; по изменению размера отверстия – суживающие и расширяющие его.

В процессе эволюции функциональные группы мышц развивались парами: сгибающая группа формировалась совместно с разгибающей, пронирующая – совместно с супинирующей и т. п. Это наглядно выявляется на примерах развития суставов: каждая ось вращения в суставе, выражая его форму, имеет свою функциональную пару мышц. Такие пары состоят, как правило, из противоположных по функции групп мышц. Так, одноосные суставы имеют одну пару мышц, двухосные – две пары, а трехосные – три пары или соответственно две, четыре, шесть функциональных групп мышц.

Синергизм и антагонизм в действиях мышц . Мышцы, входящие в функциональную группу, характеризуются тем, что проявляют одинаковую двигательную функцию. В частности, все они или притягивают кости – укорачиваются, или отпускают – удлиняются, или же проявляют относительную стабильность напряжения, размеров и формы. Мышцы, совместно действующие в одной функциональной группе, называются синергистами . Синергизм проявляется не только при движениях, но и при фиксации частей тела.

Мышцы противоположных по действию функциональных групп мышц называются антагонистами . Так, мышцы-сгибатели будут антагонистами мышц-разгибателей, пронаторы – антагонистами супинаторов и т. п. Однако истинного антагонизма между ними нет. Он проявляется лишь в отношении определенного движения или определенной оси вращения.

Следует отметить, что при движениях, в которых участвует одна мышца, синергизма быть не может. Вместе с тем антагонизм имеет место всегда, и только согласованная работа мышц-синергистов и мышц-антагонистов обеспечивает плавность движений и пре­дотвращает травмы. Так, например, при каждом сгибании действует не только сгибатель, но обязательно и разгибатель, который постепенно уступает сгибателю и удерживает его от чрезмерного сокращения. Поэтому антагонизм обеспечивает плавность и соразмерность движений. Каждое движение, таким образом, есть результат действия антагонистов.

Двигательная функция мышц. Поскольку каждая мышца фиксируется преимущественно к костям, то внешне двигательная функция ее выражается в том, что она либо притягивает кости, либо удерживает, либо отпускает их.

Мышца притягивает кости, когда она активно сокращается, брюшко ее укорачивается, места прикреплений сближаются, расстояние между костями и угол в суставе уменьшаются в сторону тяги мышцы.

Удержание костей происходит при относительно постоянном напряжении мышцы, почти незаметном изменении ее длины.

Если движение осуществляется при эффективном действии внешних сил, например силы тяжести, то мышца удлиняется до определенного предела и отпускает кости; они отдаляются друг от друга, причем движение их происходит в обратном направлении по сравнению с тем, которое имело место при притягивании костей.

Для понимания функции скелетной мышцы необходимо знать, с какими костями связана мышца, через какие суставы она проходит, какие оси вращения она пересекает, с какой стороны пересекает ось вращения, при какой опоре действует мышца.

Тонус мышц. В организме каждая скелетная мышца всегда находится в состоянии определенного напряжения, готовности к действию. Минимальное непроизвольное рефлекторное напряжение мышцы называется тонусом мышцы . Физические упражнения повышают тонус мышц, влияют на тот своеобразный фон, с которого начинается действие скелетной мышцы. У детей тонус мышц меньше, чем у взрослых, у женщин меньше, чем у мужчин, у не занимающихся спортом меньше, чем у спортсменов.

Для функциональной характеристики мышц используются такие показатели как их анатомический и физиологический поперечник. Анатомический поперечник – площадь поперечного сечения, перпендикулярного длиннику мышцы и проходящего через брюшко в наиболее широкой его части. Этот показатель характеризует величину мышцы, её толщину (фактически определяет объём мышцы). Физиологический поперечник представляет собой суммарную площадь поперечного сечения всех мышечных волокон, входящих в состав мышцы. А поскольку сила сокращающейся мышцы зависит от величины поперечного сечения мышечных волокон, то физиологический поперечник мышцы характеризует её силу. У мышц веретенообразной и лентовидной формы с параллельным расположением волокон анатомический и физиологический поперечник совпадают. Иначе у перистых мышц. Из двух равновеликих мышц, имеющих одинаковый анатомический поперечник, у перистой мышцы физиологический поперечник будет больше, чем у веретенообразной. В связи с этим перистая мышца обладает большей силой, однако размах сокращения её коротких мышечных волокон будет меньше, чем у веретенообразной мышцы. Поэтому перистые мышцы имеются там, где необходима значительная сила мышечных сокращений при сравнительно небольшом размахе движений (мышцы стопы, голени, некоторые мышцы предплечья). Веретенообразные, лентовидные мышцы, построенные из длинных мышечных волокон, при сокращении укорачиваются на большую величину. В то же время силу они развивают меньшую, чем перистые мышцы, имеющие одинаковый с ними анатомический поперечник.

Виды работы мышц. Тело человека и его части при сокращении соответствующих мышц изменяют своё положение, приходят в движение, преодолевают сопротивление силы тяжести или, наоборот, уступают этой силе. В других случаях при сокращении мышц тело удерживается в определённом положении без выполнения движения. Исходя из этого, различают преодолевающую, уступающую и удерживающую работу мышц.

Преодолевающая работа выполняется в том случае, когда сила сокращения мышцы изменяет положение части тела, конечности или её звена с грузом или без него, преодолевая силу сопротивления. Например, двуглавая мышца плеча, сгибая предплечье, выполняет преодолевающую работу, дельтовидная мышца (главным образом ее средние пучки) при отведении руки также выполняет преодолевающую работу.

Уступающей называется работа, при которой мышца, оставаясь напряженной, постепенно расслабляется, уступая действию силы тяжести части (конечности) тела и удерживаемого ею груза. Например, при приведении отведенной руки дельтовидная мышца выполняет уступающую работу, она постепенно расслабляется и рука опускается.

Удерживающей называется работа, при которой сила тяжести уравновешивается напряжением мышц и тело или груз удерживается в определённом положении без перемещения в пространстве. Например, при удержании руки в отведенном положении дельтовидная мышца выполняет удерживающую работу.

Преодолевающая и уступающая работа, когда сила мышечных сокращений обусловлена перемещением тела или его частей в пространстве, можно рассматривать как динамическую работу . Удерживающая работа, при которой движения всего тела или части тела не происходит, является статической . Используя тот или иной вид работы, можно значительно разнообразить свою тренировку и сделать её более эффективной.

Мышечная система отвечает за движение человеческого тела. Прикреплено к костям около 700 мышц, которые составляют примерно половину массы тела человека. Каждая из этих мышц является дискретным органом, выполненным из ткани скелетных мышц, кровеносных сосудов, сухожилий и нервов. Мышечная ткань также находится внутри сердца, органов пищеварения и кровеносных сосудов. В этих органах она служит для транспортировки веществ … [Читайте ниже]

  • Голова и шея
  • Грудь и верх спины
  • Живот, поясница и таз
  • Ноги и стопы
  • Мышцы рук и кистей

[Начало сверху] …

Типы мышечных тканей

Есть три вида мышечной ткани: висцеральные, мышцы сердца и скелета.
Висцеральные — находятся внутри органов, таких как желудок, кишечник и кровеносные сосуды. Самые слабые из всех мышц внутренних органов, служат для перемещения веществ. Висцеральные мышцы не могут непосредственно контролироваться сознанием. Термин «гладкая» используется для висцеральной мышцы, так как она имеет гладкую структуру, однородный вид (если смотреть под микроскопом). Её внешний вид резко контрастирует с сердечной и скелетными мышцами.
Сердечная мышца расположена только в сердце, она отвечает за перекачивание крови по всему телу. Сердечная мышца не контролируется сознательно. В то время как гормоны и сигналы мозга могут регулировать скорость сжатия сердечной мышцы, стимулируя сокращение. Естественный стимулятор биения сердца — сердечная мышечная ткань, которая заставляет другие клетки сокращаться.
Клетки сердечной мышечной ткани являются поперечно — полосатыми, то есть, они представляют из себя светлые и темные полосы, если смотреть под световым микроскопом. Расположение белковых волокон внутри клеток вызывает эти светлые и темные полосы. Мышечная клетка очень сильна, в отличие от висцеральной.
Клетки сердечной мышцы являются разветвленными или X Y формы, клетки плотно соединены между собой специальными переходами, называемыми интеркалированными дисками. Интеркалированные диски состоят из пальцевидной проекции двух соседних ячеек, которые сцепляются и обеспечивают прочную связь между клетками. Разветвленная структура и интеркалированные диски позволяют мышечным клеткам противостоять высокому давлению крови и напряжению при перекачке крови в течение всей жизни. Эти функции также способствуют быстрому распространению электрохимических сигналов от клетки к клетке так, что сердце может биться как единое целое.

Скелетные мышцы являются единственной мышечной тканью в организме человека, которая управляется сознательно. Каждое физическое действие, которое человек сознательно выполняет (например: разговор, ходьба или письмо) требует движения скелетных мышц. Скелетные могут сжиматься, чтобы перемещать части тела ближе к кости, к которой мышца прикрепляется. Большинство скелетных мышц прикреплены к двум костям через суставы, так что они служат для перемещения частей этих костей ближе друг к другу.
Каркасные (скелетные) мышечные клетки образуются, когда множество мелких клеток — предшественников скомковываются вместе, чтобы сформировать длинные, прямые, многоядерные волокна. Исчерчены каркасные мышцы так же, как и сердечная, поэтому они очень сильны. Скелетная мышца получает свое название от того, что она всегда подключаются к скелету, по крайней мере, в одном месте.

Анатомия скелетных мышц

Большинство скелетных прикреплены к двум костям через сухожилия. Сухожилия — жесткие полосы плотной регулярной соединительной ткани; сильные коллагеновые волокна прочно прикрепляют мышцы к костям. Сухожилия находятся в крайнем напряжении, когда они тянутся, так что они очень сильно вплетены в покрытия мышц и костей.

Мышцы двигаются за счет сокращения их длины, натягивания сухожилий и перемещения костей ближе друг к другу. Одна из костей втягивается по направлению к другой кости, которая остается неподвижной. Место на движущейся кости, которая соединяется с мышцей через сухожилия называется вставкой. Мышцы живота находятся между сухожилиями, что позволяет делать фактическое сокращение.

Названия скелетных мышц

Их названия происходят на основе множества различных факторов, в том числе местонахождения, происхождения и вставки, количества, формы, размера, направления и функции.

Местоположение

Много мышц получают имена от анатомической области. Брюшная и прямая, поперечная брюшная, например, находятся в брюшной полости. Другие, как и передняя большеберцовая, названы из-за части кости (передняя часть голени), к которой они присоединены. Другие мышцы используют симбиоз двух видов названий, как плечелучевая, которая названа в честь области нахождения.

Происхождение

Некоторые мышцы названы на основе их подключения к стационарной и движущейся кости. Эти мышцы становится очень легко определить, когда вы знаете имена костей, к которым они присоединены.

Некоторые подключаются к более чем 1 кости или более чем в одном месте и имеют более чем один источник. Мышца сразу с двумя происхождения называется бицепсом, а с тремя происхождения — трицепсной. И, наконец, мышца с четырьмя происхождениями называется четырехглавой.

Форма, размер и направление

Также важно классифицировать мышцы по форме. Например, дельтовидные имеют дельта — или треугольную форму. Зубчатые имеют зубчатую или пилообразный форму. Ромбовидные — обладают формой ромба.
Размер может быть использован, чтобы различать два типа мышц, найденных в одном и том же регионе. Область ягодичной части содержит три мышцы, дифференцированные по размеру: ягодичная большая, ягодичная средняя и малая. И, наконец, направления мышечных волокон могут быть использованы для их идентификации. В брюшине существует несколько широких и плоских. Мышцы с волокнами, расположенными вверх и вниз — являются прямыми, работающие в поперечном направлении (слева направо) — поперечные, а работающие под углом, являются косыми.

Функции мышечной ткани человека

Мышцы иногда классифицируют по типу функции, которую они выполняют. Большинство мышц предплечья именуются в зависимости от их функций, потому что они расположены в том же регионе и имеют одинаковые формы и размеры. Например, сгибатели предплечья сгибают запястья и пальцы.
Супинатор — это мышца, которая поднимает запястье ладонью вверх. В ноге есть такие, которые называются аддукторами, чья роль заключается в стягивании ног.

Инициативные группы в скелетных мышцах

Чаще всего они работают в группах, чтобы произвести точные движения. Мышца, которая производит какое — либо конкретное движение тела известна как агонист или тягач. Агонисты всегда парны с антагонистами, которые производят противоположный эффект на одних и тех же костях. Например, двуглавая мышцы плеча сгибает руку в локте. В качестве антагониста для этого движения — трехглавая плеча — расширяет руку в локте. Когда трицепсы расширяют руку, бицепс будет считаться антагонистом.

В дополнение к агонист / антагонист классификации, другие мышцы работают, чтобы поддержать движение агониста.
Синергистами являются мышцы, которые помогают стабилизировать движение и уменьшить лишние движения. Они обычно находятся в областях вблизи агониста и часто подключаются к той же кости. Если вы поднимаете что-то тяжелое, они помогают держать тело в вертикальном положении неподвижно, так что вы поддерживаете свой баланс во время подъема.

Гистология скелетной мускулатуры

Скелетные мышечные волокна значительно отличаются от других тканей организма из — за их узкоспециализированных функций. Многие из органелл, которые составляют мышечные волокна являются уникальными для данного типа клетки.

Сарколемма является клеточной мембраной мышечных волокон. Сарколемма выступает в качестве проводника для электрохимических сигналов, которые стимулируют мышечные клетки. Подключенные к сарколемме поперечные трубочки (Т-трубочки) помогают переносить электрохимические сигналы в середину мышечного волокна. Саркоплазматический ретикулум служит в качестве хранилища для ионов кальция (Са2 +), которые имеют жизненно важное значение для сокращения мышц.
Митохондрии , движущая сила клетки, в изобилии находятся в мышечных клетках, чтобы обеспечивать энергией в виде АТФ активные мышцы. Большая часть структуры мышечного волокна выполнена из миофибрилл, которые являются сократительными структурами клетки. Миофибриллы составлены из многих белковых волокон, расположенных в повторяющихся субъединицах, называемых саркомерами. Саркомера является функциональной единицей мышечных волокон.

Структура саркомера

Саркомеры изготавливаются из двух типов белковых волокон: толстых нитей и тонких нитей.

Толстые нити состоят из множества соединенных звеньев белка миозина. Миозин является белком, который вызывает мышцы сокращаться.
Тонкие нити состоят из трех белков:

Актин.
Актин образует спиральную структуру, которая составляет большую часть массы тонкой нити.

Тропомиозин.
Тропомиозин — длинный волокнистый белок, который оборачивается вокруг актина и охватывает миозин, связывая с актином.

Тропонин.
Белок, связывающийся очень плотно с тропомиозином во время мышечного сокращения.

Функции мышечной ткани

Основной функцией мышечной системы является движение . Мышцы являются единственной тканью в организме, что имеет возможность перемещать другие части тела.
Связанная с функцией движения является вторая функция мускульной системы: поддержание позы и положения тела . Мышцы зачастую держат тело неподвижно или в определенном положении, а не вызывают движение. Мышцы, отвечающие за положение тела имеют наивысшую выносливость — они выполняют свои функции в течение всего дня, не становясь усталыми.
Еще одна функция, связанная с движением является движение веществ внутри тела . Сердечные и висцеральные мышцы, в первую очередь, ответственны за транспортировку веществ, таких как кровь или питательные вещества из одной части тела в другую.

Последняя функция мышечной ткани является генерация тепла . В результате высокой скорости метаболизма сокращающейся мышцы, наша мышечная система производит большое количество отработанного тепла. Многие небольшие сокращения мышц в организме производят наше естественное тепло тела. Когда мы прилагаем усилия больше, чем обычно, дополнительные сокращения мышц приводят к повышению температуры тела и в конечном итоге к потливости.

Скелетная мускулатура в роли рычага

Мышцы скелетной системы работают вместе с костями и суставами образуя рычажные системы. Они действуют как передатчики усилия, а кость выступает в качестве опоры; при движении мышцы и кости, объект перемещается.

Есть три класса рычагов, но подавляющее большинство рычагов в теле — рычаги третьего класса. Рычаг третьего класса представляет собой систему, в которой точка опоры находится на конце рычага. В организме, рычаги третьего класса, служат для увеличения расстояния для сокращения мышцы.

Двигательные единицы мышц

Нервные клетки, называемые моторными нейронами, управляют скелетными мышцами. Каждый двигательный нейрон контролирует несколько мышечных клеток в группе. Когда двигательный нейрон получает сигнал от мозга, он стимулирует все клетки мышц в то же время.
Размер двигательных единиц изменяется по всему телу, в зависимости от функции. Мышцы, которые выполняют тонкие движения — как мышцы глаз или пальцев, имеют очень много нейронов для повышения точности контроля мозга над этими структурами. Мышцы, которые требуют много сил, чтобы выполнять свои функции, как ноги или руки — имеют много мышечных клеток и меньше нейронов в каждом блоке.

Когда положительные ионы достигают саркоплазматического ретикулума, ионы Са2 + высвобождаются и протекают в миофибриллы. Ионы Са2 + связываются с тропонином, что вызывает молекулу тропонина изменять форму и переместить близлежащие молекулы тропомиозина. Тропомиозин отодвигается от миозина и связывается с молекулой актина, что позволяет актину и миозину связываться друг с другом.

Типы мышечных сокращений

Силой сжатия мышц можно управлять двумя факторами: количеством двигательных единиц (нейронов), участвующих в сокращении и количеством импульсов от нервной системы. Один нервный импульс моторного нейрона вызовет краткое напряжение группы мышц, а затем заставит расслабиться. Если двигательный нейрон обеспечивает несколько сигналов в течение короткого периода времени, то сила и продолжительность сжатия увеличивается. Если двигательный нейрон обеспечивает много нервных импульсов в быстрой последовательности, мышца может войти в состояние полного и прочного сокращения. Мышца останется в сжатом положении, пока скорость сигнала нерва не замедлится или до тех пор, пока мышца станет слишком усталой, чтобы поддерживать напряжение.

Не все сокращения мышц производят движение. Изометрическое сокращение — легкие схватки, которые увеличивают напряжение в мышцах, не оказывая достаточной силы, чтобы переместить часть тела. Когда тело напряжено из-за стресса, мышцы выполняют изометрическое сокращение. Поддержание позы является также результатом изометрических сокращений. Сужения мышц, что действительно производит движение является изотоническими сокращениями. Изотонические сокращения необходимы для наращивания мышечной массы за счет подъема веса.

Мышечный тонус является естественным состоянием, в котором скелетные мышцы остаются во всё время. Мышечный тонус обеспечивает легкое натяжение мышц, чтобы предотвратить повреждение мышц и суставов от резких движений, а также помогает поддерживать осанку тела. Все не повреждённые мышцы поддерживают некоторое количество мышечного тонуса во всё время.

Функциональные типы скелетных мышечных волокон

Cкелетные мышечные волокона, можно разделить на два типа в зависимости от того, как они производят и используют энергию:

I тип — волокна с очень медленным и осторожным сокращением. Они очень устойчивы к усталости, потому что используют аэробное дыхание для производства энергии из сахара. Находятся I типа волокона в мышцах по всему телу для выносливости и осанки, рядом с позвоночником и в регионах шеи.

Волокна типа II разбиты на две подгруппы: II типа А и типа II B.
Тип II волокна А быстрее и сильнее, чем I типа волокона, но не имеют столько же выносливости. Типа II A волокна находятся по всему телу, но особенно в ногах,где они работают, чтобы поддерживать ваше тело на протяжении долгого времени для ходьбы и стояния.

Тип II B — волокна еще быстрее и сильнее, чем II типа А, но еще меньше выносливые. Тип II B волокна немного светлее, чем тип I и тип II А из-за их отсутствия миоглобина — кислородного пигмента. Находятся волокна типа II B по всему телу, но особенно в верхней части, где они дают скорость и силу рукам и груди за счет выносливости.

Мышечный метаболизм и усталость

Мышцы получают энергию из различных источников, в зависимости от ситуации, в которой мышца работает. Мышцы способны использовать аэробное дыхание, когда необходимо произвести от низкого до умеренного уровня силы упражнения. Аэробное дыхание требует кислорода, чтобы произвести около 36-38 молекул АТФ из молекулы глюкозы. Аэробные дыхания является очень эффективным и может продолжаться до тех пор, пока мышца получает достаточное количество кислорода и глюкозы. Когда мы используем мышцы, чтобы произвести высокий уровень силы, они становятся настолько плотными, что находящийся кислород в крови не может войти в мышцу. Это условие приводит к тому, что мышцы используют для выработки энергии брожение молочной кислоты (форма анаэробного дыхания). Анаэробное дыхание менее эффективно аэробного дыхания — только 2 АТФ производится из каждой молекулы глюкозы.
Для того, чтобы мышцы работали в течение более длительного периода времени, мышечные волокна содержат несколько важных энергетических молекул. Миоглобин , красный пигмент содержащийся в мышцах, содержит железо и сохраняет кислород в манере, подобной гемоглобину крови. Кислород из миоглобина позволяет мышцам продолжать аэробное дыхание в отсутствии кислорода. Другой химикат, который помогает мышцам работать — креатинфосфат . Мышцы используют энергию в виде АТФ, происходит превращение АТФ в АДФ, чтобы выпустить свою энергию. Креатинфосфат жертвует свою фосфатную группу АДФ, чтобы включить её в АТФ, с тем, чтобы обеспечить дополнительную энергию для мышц. Наконец, мышечные волокна содержат энергию аккумулирующих гликогенов, больших макромолекул, изготовленных из множества связанной между собой глюкозы. Активные мышцы отщепляют глюкозу от молекул гликогена, чтобы обеспечить внутренний запас топлива.

Мышечная усталость

Когда мышцы исчерпали энергию во время аэробного или анаэробного дыхания, то быстро утомляются и теряют способность сокращаться. Это состояние известно как мышечная усталость . Утомление мышц не говорит о содержании очень малого количества или отсутствия кислорода, глюкозы или АТФ, но вместо этого имеет много продуктов — отходов дыхания, таких как молочная кислота и АДФ. Тело должно принимать дополнительное количество кислорода после физической нагрузки, чтобы заменить кислород, который находился в миоглобине мышечных волокон, а также для питания аэробного дыхания, которое обеспечивает поставки энергии внутри клетки. Восстановление потребления кислорода (кислородное голодание) — это восприятие дополнительного кислорода, который организм должен принять, чтобы восстановить мышечные клетки, их привести в состояние покоя. Это объясняет, почему появляется одышка в течение нескольких минут после напряженной деятельности — ваше тело пытается восстановить себя в нормальное состояние.

Организм человека - сложная и многогранная система, каждая клетка, каждая молекула которой тесно взаимосвязана с другими. Находясь в гармонии друг с другом, они способны обеспечивать единство, которое, в свою очередь, проявляется в здоровье и долголетии, однако при малейшем сбое вся система может рухнуть в один миг. Как устроен этот сложный механизм? Благодаря чему поддерживается его полноценная работа и как предотвратить дисбаланс слаженной и в то же время чувствительной к внешнему воздействию системы? Эти и другие вопросы раскрывает анатомия человека.

Основы анатомии: науки о человеке

Анатомия - это наука, повествующая о внешнем и внутреннем устройстве организма в нормальном состоянии и при наличии всевозможных отклонений. Для удобства восприятия строение человека анатомия рассматривает в нескольких плоскостях, начиная с маленьких «песчинок» и заканчивая крупными «кирпичиками», составляющими единое целое. Такой подход позволяет выделить несколько уровней изучения организма:

  • молекулярный и атомный,
  • клеточный,
  • тканевой,
  • органный,
  • системный.

Молекулярный и клеточный уровни живого организма

Начальный этап изучения анатомии тела человека рассматривает организм как комплекс ионов, атомов и молекул. Как и большинство живых существ, человек образован всевозможными химическими соединениями, основу которых составляют углерод, водород, азот, кислород, кальций, натрий и другие микро- и макроэлементы. Именно эти вещества поодиночке и в комплексе служат основой молекул веществ, входящих в клеточный состав человеческого тела.

В зависимости от особенностей формы, размеров и выполняемых функций выделяют различные виды клеток. Так или иначе, каждая из них имеет схожее строение, присущее для эукариотов - наличие ядра и различных молекулярных компонентов. Липиды, белки, углеводы, вода, соли, нуклеиновые кислоты и т. д. вступают в реакции друг с другом, обеспечивая тем самым выполнение возложенных на них функций.

Строение человека: анатомия тканей и органов

Сходные по строению и функциям клетки в комплексе с межклеточным веществом образуют ткани, каждая из которых выполняет ряд определённых задач. В зависимости от этого в анатомии тела человека выделяют 4 группы тканей:

  • Эпителиальная ткань отличается плотной структурой и малым количеством межклеточного вещества. Такое строение позволяет ей отлично справляться с защитой организма от внешнего воздействия и всасыванием полезных веществ извне. Впрочем, эпителий присутствует не только во внешней оболочке организма, но и во внутренних органах, например, железах. Они быстро восстанавливаются практически без постороннего вмешательства, а потому считаются наиболее универсальными и прочными.
  • Соединительные ткани могут быть очень разнообразны. Они отличаются большим процентом межклеточного вещества, которое может быть любой структуры и плотности. В зависимости от этого варьируют и функции, возложенные на соединительные ткани, - они могут служить опорой, защитой и транспортом питательных веществ для остальных тканей и клеток организма.
  • Особенностью мышечной ткани является умение изменять свои размеры, то есть сокращаться и расслабляться. Благодаря этому она отлично справляется с координацией тела - перемещением как отдельных частей, так и целого организма в пространстве.
  • Нервная ткань - самая сложная и функциональная. Её клетки управляют большинством процессов, протекающих внутри других органов и систем, однако при этом не могут существовать самостоятельно. Всю нервную ткань условно можно разделить на 2 вида: нейроны и глии. Первые обеспечивают передачу импульсов по всему организму, а вторые оберегают и питают их.

Комплекс тканей, локализованный в определённой части организма, имеющий чёткую форму и выполняющий общую функцию, является самостоятельным органом. Как правило, орган представлен различными типами клеток, однако, какой-то определённый вид ткани всегда преобладает, а остальные носят, скорее, вспомогательный характер.

В анатомии человека органы принято условно классифицировать на наружные и внутренние. Наружное, или внешнее, строение человеческого тела можно увидеть и изучить без каких-либо специальных приборов или манипуляций, поскольку все части видны невооружённым глазом. К ним относятся голова, шея, спина, грудь, туловище, верхние и нижние конечности. В свою очередь, анатомия внутренних органов более сложна, поскольку для её изучения требуется инвазивное вмешательство, современные научно-медицинские приспособления или как минимум наглядный дидактический материал. Внутреннее строение представлено органами, находящимися внутри тела человека, - почками, печенью, желудком, кишечником, головным мозгом и т. д.

Системы органов в анатомии человека

Несмотря на то, что каждый орган выполняет какую-то определённую функцию, существовать по-отдельности они не могут - для нормальной жизнедеятельности необходима комплексная работа, поддерживающая функциональность целого организма. Именно поэтому анатомия органов не является самой высокой ступенью изучения тела человека - гораздо удобнее рассматривать устройство организма с системной точки зрения. Взаимодействуя друг с другом, каждая система обеспечивает работоспособность организма в целом.


В анатомии принято выделять 12 систем организма:

  • опорно-двигательный аппарат,
  • покровная система,
  • кроветворение,
  • сердечно-сосудистый комплекс,
  • пищеварение,
  • иммунная,
  • мочеполовой комплекс,
  • эндокринная система,
  • дыхание.

Чтобы детально изучить строение человека, рассмотрим каждую из систем органов более подробно. Краткий экскурс в основу анатомии человеческого тела поможет сориентироваться в том, от чего зависит полноценная работа организма в целом, как взаимодействуют ткани, органы и системы и каким образом сохранить здоровье.

Анатомия органов опорно-двигательной системы

Опорно-двигательный аппарат представляет собой каркас, который позволяет человеку свободно перемещаться в пространстве и поддерживает объёмную форму тела. Система включает скелет и мышечные волокна, которые тесно взаимодействуют друг с другом. Скелет определяет размеры и форму человека и формирует определённые полости, в которых помещены внутренние органы. В зависимости от возраста количество костей в скелетной системе варьирует в пределах выше 200 (у новорождённого 270, у взрослого 205–207), часть из которых выполняют функцию рычагов, а остальные остаются неподвижными, защищая органы от внешних повреждений. Кроме того, костные ткани участвуют в обмене микроэлементов, в частности, фосфора и кальция.


Анатомически скелет состоит из 6 ключевых отделов: пояса верхних и нижних конечностей плюс сами конечности, позвоночный столб и череп. В зависимости от выполняемых функций состав костей включает неорганические и органические вещества в разных пропорциях. Более прочные кости преимущественно состоят из минеральных солей, эластичные - из коллагеновых волокон. Наружный слой костей представлен очень плотной надкостницей, которая не только защищает костную ткань, но и обеспечивает ей необходимое для роста питание - именно из неё в микроскопические канальцы внутренней структуры кости проникают сосуды и нервы.

Соединительными элементами между отдельными костями служат суставы - своеобразные амортизаторы, которые позволяют изменять положение частей тела относительно друг друга. Впрочем, соединения между костными структурами могут быть не только подвижными: полуподвижные сочленения обеспечиваются хрящами различной плотности, а полностью неподвижные - костными швами в местах срастания.

Мышечная система приводит в действие весь этот сложный механизм, а также обеспечивает работу всех внутренних органов благодаря контролируемым и своевременным сокращениям. Скелетные мышечные волокна прилегают непосредственно к костям и отвечают за подвижность тела, гладкие служат основой сосудов и внутренних органов, а сердечные регулирует работу сердца, обеспечивая полноценный кровоток, а значит, жизнеспособность человека.


Поверхностная анатомия человеческого тела: покровная система

Наружное строение человека представлено кожей или, как её принято называть в биологии, дермой, и слизистыми оболочками. Несмотря на кажущуюся незначительность, эти органы играют важнейшую роль в обеспечении нормальной жизнедеятельности: вкупе со слизистыми кожа является огромной рецепторной площадкой, благодаря которой человек может тактильно ощущать различные формы воздействия, как приятные, так и опасные для здоровья.

Покровная система выполняет не только рецепторную функцию - её ткани способны защищать организм от разрушающего внешнего воздействия, выводить через микропоры токсичные и ядовитые вещества и регулировать колебания температуры тела. Составляя порядка 15 % от общей массы тела, она является важнейшей пограничной оболочкой, регулирующей взаимодействие человеческого тела и окружающей среды.

Система кроветворения в анатомии тела человека

Кроветворение является одним из основных процессов, поддерживающих жизнь внутри организма. Как биологическая жидкость кровь присутствует в 99 % всех органов, обеспечивая их полноценное питание, а значит, и функциональность. Вкупе органы кровеносной системы отвечают за образование форменных элементов крови: эритроцитов, лейкоцитов, лимфоцитов и тромбоцитов, которые служат своеобразным зеркалом, отражающим состояние организма. Именно с общего анализа крови начинается диагностика абсолютного большинства заболеваний - функциональность органов кроветворения, а значит, и состав крови чувствительно реагирует на любое изменение внутри организма, начиная с банального инфекционного или простудного заболевания и заканчивая опасными патологиями. Такая особенность позволяет оперативно приспособиться к новым условиям и быстрее восстановиться, подключив иммунитет и другие резервные возможности организма.


Все выполняемые функции чётко разделены между органами, составляющими кроветворный комплекс:

  • лимфатические узлы гарантируют поставку плазматических клеток,
  • костный мозг формирует стволовые клетки, которые позднее трансформируются в форменные элементы,
  • периферические сосудистые системы служат для транспортировки биологической жидкости к другим органам,
  • селезёнка фильтрует кровь от омертвевших клеток.

Всё это в комплексе является сложным саморегулируемым механизмом, малейший сбой в котором чреват серьёзными патологиями, затрагивающими любую из систем организма.

Сердечно-сосудистый комплекс

Система, включающая сердце и все сосуды, начиная с самых крупных и заканчивая микроскопическими капиллярами диаметром в несколько микрон, обеспечивает циркуляцию крови внутри организма, питая, насыщая кислородом, витаминами и микроэлементами и очищая от продуктов распада каждую клеточку человеческого тела. Эту гигантскую по площади сложнейшую сеть нагляднее всего демонстрирует анатомия человека в картинках и схемах, поскольку теоретически разобраться, как и куда ведёт каждый конкретный сосуд, практически нереально - их количество в организме взрослого достигает 40 млрд и более. Тем не менее, вся эта сеть является сбалансированной замкнутой системой, организованной в 2 круга кровообращения: большой и малый.


В зависимости от объёма и выполняемых функций сосуды можно классифицировать следующим образом:

  1. Артерии - крупные трубчатые полости с плотными стенками, которые состоят из мышечных, коллагеновых и эластиновых волокон. По этим сосудам насыщенная молекулами кислорода кровь разносится от сердца к многочисленным органам, обеспечивая их полноценное питание. Единственным исключением является лёгочная артерия, по которой, в отличие от остальных, кровь движется к сердцу.
  2. Артериолы - более мелкие артерии, способные менять величину просвета. Они служат связующим звеном между объёмными артериями и мелкой капиллярной сетью.
  3. Капилляры - самые маленькие сосудики диаметром не более 11 мкм, сквозь стенки которых из крови в близлежащие ткани просачиваются молекулы питательных веществ.
  4. Анастомозы - артериоло-венулярные сосуды, обеспечивающие переход из артериол в венулу в обход сети капилляров.
  5. Венулы - такие же мелкие, как и капилляры, сосуды, которые обеспечивают отток крови, лишённой кислорода и полезных частиц.
  6. Вены - более крупные по сравнению с венулами сосуды, по которым обеднённая кровь с продуктами распада движется к сердцу.

«Двигателем» столь крупной замкнутой сети является сердце - полый мышечный орган, благодаря ритмичным сокращениям которого кровь продвигается по сосудистой сетке. При нормальной работе каждую минуту сердце перекачивает не менее 6 литров крови, а за день - примерно 8 тысяч литров. Неудивительно, что сердечные заболевания являются одними из самых серьёзных и распространённых, - с возрастом этот биологический насос изнашивается, поэтому необходимо тщательно отслеживать любые изменения в его работе.

Анатомия человека: органы пищеварительной системы

Пищеварение является сложным многоступенчатым процессом, в ходе которого поступившая в организм пища расщепляется на молекулы, переваривается и транспортируется к тканям и органам. Весь этот процесс начинается в ротовой полости, куда, собственно, и поступают питательные элементы в составе блюд, включённых в суточный рацион. Там крупные куски пищи подвергаются измельчению, после чего перемещаются в глотку и пищевод.


Желудок - полый мышечный орган в брюшной полости, является одним из ключевых звеньев пищеварительной цепочки. Несмотря на то, что переваривание начинается ещё в ротовой полости, основные процессы протекают именно в желудке - здесь часть веществ сразу всасывается в кровоток, а часть подвергается дальнейшему расщеплению под воздействием желудочного сока. Основные процессы протекают под воздействием соляной кислоты и ферментов, а слизь служит своего рода амортизатором для дальнейшей транспортировки пищевой массы в кишечник.

В кишечнике желудочное пищеварение сменяется кишечным. Поступающая из протока желчь нейтрализует действие желудочного сока и эмульгирует жиры, повышая их соприкосновение с ферментами. Далее, на протяжении всей длины кишечника, оставшаяся непереваренной масса расщепляется на молекулы и всасывается в кровоток через кишечную стенку, а всё, что остаётся невостребованным, выводится с каловыми массами.

Помимо основных органов, отвечающих за транспортировку и расщепление нутриентов, к пищеварительной системе относятся:

  • Слюнные железы, язык - отвечают за подготовку пищевого комка к расщеплению.
  • Печень - самая крупная в организме железа, которая регулирует синтез желчи.
  • Поджелудочная железа - орган, необходимый для выработки ферментов и гормонов, принимающих участие в метаболизме.

Значение нервной системы в анатомии тела

Комплекс, объединённый нервной системой, служит своего рода центром управления всеми процессами организма. Именно здесь регулируется работа тела человека, его способность воспринимать и реагировать на любой внешний раздражитель. Руководствуясь функциями и локализацией конкретных органов нервной системы, в анатомии тела принято выделять несколько классификаций:

Центральная и периферическая нервные системы

ЦНС, или центральная нервная система, - это комплекс веществ головного и спинного мозга. И тот, и другой одинаково хорошо защищены от травмирующих внешних воздействий костными структурами - спинной мозг заключён внутри позвоночного столба, а головной располагается в полости черепа. Такое строение организма позволяет предотвратить повреждения чувствительных клеток мозгового вещества при малейшем воздействии.


Периферическая нервная система отходит от позвоночного столба к различным органам и тканям. Она представлена 12 парами черепных и 31 парой спинномозговых нервов, по которым различные импульсы молниеносно передаются от мозга к тканям, стимулируя или, наоборот, подавляя их работу в зависимости от различных факторов и конкретной ситуации.

Соматическая и вегетативная нервные системы

Соматический отдел служит связующим элементом между окружающей средой и организмом. Именно благодаря этим нервным волокнам человек в состоянии не только воспринимать окружающую действительность (например, «огонь горячий»), но и адекватно на неё реагировать («значит, надо убрать руку, чтобы не получить ожог»). Такой механизм позволяет защитить тело от немотивированного риска, подстроиться под окружающую обстановку и правильно проанализировать информацию.

Вегетативная система более автономна, поэтому медленнее реагирует на влияние извне. Она регулирует деятельность внутренних органов - желёз, сердечно-сосудистой, пищеварительной и других систем, а также поддерживает оптимальный баланс во внутренней среде человеческого тела.

Анатомия внутренних органов лимфатической системы

Лимфатическая сеть хоть и менее обширна, чем кровеносная, но не менее значима для поддержания здоровья человека. К ней относятся разветвлённые сосуды и лимфатические узлы, по которым движется биологически значимая жидкость - лимфа, находящаяся в тканях и органах. Ещё одним отличием лимфатической сети от кровеносной является её незамкнутость - сосуды, несущие лимфу, не смыкаются в кольцо, оканчиваясь непосредственно в тканях, откуда всасывают лишнюю жидкость и впоследствии переносят к венозному руслу.


В лимфатических узлах происходит дополнительная фильтрация, позволяющая очистить лимфу от молекул вирусов, бактерий и токсинов. По их реакции медики обычно и узнают, что в организме начался воспалительный процесс, - места локализации лимфоузлов становятся отёчными и болезненными, а сами узелки заметно увеличиваются в размерах.

Основная сфера деятельности лимфатической системы заключается в следующем:

  • транспорт липидов, всосавшихся с пищей, в кровяное русло;
  • поддержание сбалансированного объёма и состава биологических жидкостей организма;
  • эвакуация скопившихся излишков воды в тканях (например, при отёках);
  • защитная функция тканей лимфоузлов, в которой вырабатываются антитела;
  • фильтрация молекул вирусов, бактерий и токсинов.

Роль иммунитета в анатомии человека

На иммунной системе лежит ответственность за поддержание здоровья организма при любом внешнем воздействии, особенно вирусной или бактериальной природы. Анатомия тела продумана таким образом, чтобы болезнетворные микроорганизмы, попадая внутрь, максимально быстро встречались с органами иммунитета, которые, в свою очередь, должны не только распознать происхождение «незваного гостя», но и правильно отреагировать на его появление, подключив остальные резервы.


Классификация органов иммунитета включает центральную и периферическую группы. К первой относятся костный мозг и тимус. Костный мозг представлен губчатой тканью, которая способна синтезировать клетки крови, в том числе лейкоциты, отвечающие за уничтожение чужеродных микробов. А тимус, или вилочковая железа, является местом для размножения лимфатических клеток.

Периферические органы, отвечающие за иммунитет, более многочисленны. К ним относятся:

  • Лимфатические узлы - место фильтрации и распознавания патологических микроэлементов, проникших в организм.
  • Селезёнка - многофункциональный орган, в котором осуществляется депонирование элементов крови, её фильтрация и производство лимфатических клеток.
  • Участки лимфоидной ткани в органах - место, где «работают» антигены, вступая в реакцию с болезнетворными микроорганизмами и подавляя их.

Благодаря работоспособности иммунитета организм может справляться с вирусными, бактериальными и другими заболеваниями, не обращаясь за помощью к медикаментозной терапии. Крепкий иммунитет позволяет противостоять чужеродным микроорганизмам на начальном этапе, предотвращая тем самым возникновение болезни или как минимум обеспечивая её лёгкое течение.

Анатомия органов чувств

Органы, отвечающие за оценку и восприятие реалий внешней среды, относятся к органам чувств: зрения, осязания, обоняния, слуха и вкуса. Именно через них к нервным окончаниям поступает информация, которая молниеносно обрабатывается и позволяет правильно реагировать на обстановку. К примеру, осязание позволяет воспринять информацию, поступающую через рецепторное поле кожи: на ласковые поглаживания, лёгкий массаж кожа мгновенно реагирует едва ощутимым повышением температуры, которое обеспечивается благодаря притоку крови, тогда как при болезненных ощущениях (например, при термическом воздействии или повреждении тканей), ощущаемых на поверхности дермальных тканей, организм мгновенно реагирует сужением кровеносных сосудов и замедлением кровотока, который обеспечивает защиту от более глубоких повреждений.


Зрение, слух и другие органы чувств позволяют не только физиологически реагировать на изменения во внешней среде, но и испытывать различные эмоции. Например, видя прекрасную картину или слушая классическую музыку, нервная система посылает организму сигналы к расслаблению, умиротворению, благодушию; чужая боль, как правило, вызывает сострадание; а неприятные новости - грусть и озабоченность.

Мочеполовая система в анатомии тела человека

В некоторых научных источниках мочеполовую систему рассматривают как 2 составляющие: мочевыделительную и репродуктивную, однако, из-за тесной взаимосвязи и смежного расположения их всё же принято объединять. Строение и функции этих органов сильно разнятся в зависимости от половой принадлежности, поскольку на них возложен один из самых сложных и загадочных процессов взаимодействия полов - репродукция.

И у женщин, и у мужчин мочевыделительная группа представлена следующими органами:

  • Почки - парные органы, которые выводят из организма излишек воды и токсичные вещества, а также регулируют объём крови и других биологических жидкостей.
  • Мочевой пузырь - полость, состоящая из мышечных волокон, в которой накапливается моча до момента её выведения.
  • Уретра, или мочеиспускательный канал - путь, по которому моча эвакуируется из пузыря после его наполнения. У мужчин он составляет 22–24 см, а у женщин - всего 8.

Репродуктивная составляющая мочеполовой системы сильно разнится в зависимости от пола. Так, у мужчин она включает яички с придатками, семенные железы, простату, мошонку и пенис, которые в комплексе отвечают за формирование и эвакуацию семенной жидкости. Женская половая система устроена более сложно, поскольку именно на представительниц прекрасного пола ложится ответственность за вынашивание ребёнка. К ней относятся матка и маточные трубы, пара яичников с придатками, влагалище и наружные половые органы - клитор и 2 пары половых губ.


Анатомия органов эндокринной системы

Под эндокринными органами подразумевают комплекс различных желёз, которые синтезируют в организме специальные вещества - гормоны, отвечающие за рост, развитие и полноценное протекание многих биологических процессов. К эндокринной группе органов относятся:

  1. Гипофиз - небольшая «горошина» в головном мозге, которая вырабатывает около десятка разнообразных гормонов и регулирует рост и размножение организма, отвечает за поддержание метаболизма, артериального давления и мочеиспускания.
  2. Щитовидная железа, расположенная в области шеи, контролирует деятельность обменных процессов, отвечает за сбалансированный рост, интеллектуальное и физическое развитие личности.
  3. Паращитовидная железа - регулятор усвоения кальция и фосфора.
  4. Надпочечники вырабатывают адреналин и норадреналин, которые не только контролируют поведение в стрессовой ситуации, но и влияют на сердечные сокращения и состояние сосудов.
  5. Яичники и яички - исключительно половые железы, которые синтезируют гормоны, необходимые для нормальной половой функции.

Любое, даже самое минимальное, повреждение эндокринных желёз может стать причиной серьёзного гормонального дисбаланса, который, в свою очередь, приведёт к сбоям в работе организма в целом. Именно поэтому исследование крови на уровень гормонов является одним из базовых исследований в диагностике различных патологий, особенно связанных с репродуктивной функцией и всевозможными нарушениями развития.

Функция дыхания в анатомии человека

Система дыхания человека отвечает за насыщение организма молекулами кислорода, а также выведение отработанного углекислого газа и токсических соединений. По сути, это последовательно соединённые между собой трубки и полости, которые сначала заполняются вдыхаемым воздухом, а потом изгоняют изнутри углекислый газ.


Верхние дыхательные пути представлены носовой полостью, носоглоткой и гортанью. Там воздух согревается до комфортной температуры, позволяя предотвратить переохлаждение нижних отделов дыхательного комплекса. Кроме того, слизь носа увлажняет слишком сухие потоки и обволакивает плотные мельчайшие частички, которые могут травмировать чувствительную слизистую.

Нижние дыхательные пути начинаются гортанью, в которой не только осуществляется функция дыхания, но и формируется голос. При колебании голосовых связок гортани возникает звуковая волна, однако трансформируется в членораздельную речь она только в ротовой полости, с помощью языка, губ и мягкого нёба.

Далее воздушный поток проникает в трахею - трубку из двух десятков хрящевых полуколец, которая прилегает к пищеводу и впоследствии распадается на 2 отдельных бронха. Затем бронхи, впадающие в ткани лёгких, ветвятся на меньшие по размеру бронхиолы и т. д., вплоть до образования бронхиального дерева. Сама же лёгочная ткань, состоящая из альвеол, отвечает за газообмен - всасывание кислорода из бронхов и последующую отдачу углекислоты.

Послесловие

Организм человека представляет собой сложную и уникальную в своем роде структуру, которая способна самостоятельно регулировать свою работу, реагируя на малейшие изменения окружающей среды. Базовые знания анатомии человека обязательно пригодятся каждому, кто стремится сохранить свой организм, поскольку нормальная работа всех органов и систем является основой здоровья, долголетия и полноценной жизни. Понимая, как происходит тот или иной процесс, от чего он зависит и чем регулируется, вы сможете вовремя заподозрить, выявить и скорректировать возникшую проблему, не пуская её на самотёк!

Лекция 6. ОДА. МЫШЕЧНАЯ СИСТЕМА

1. Строение и функции скелетных мышц

2. Классификация скелетных мышц

4. Мышцы тела человека

Строение и функции скелетных мышц

Скелетные мышцы являются активной частью опорно-двигательного аппарата. Построены эти мышцы из поперечнополосатых (исчерченных) мышечных волокон. Мышцы прикрепляются к костям скелета и при своем сокращении (укорочении) приводят костные рычаги в движение. Мышцы удерживают положение тела и его частей в пространстве, перемещают костные рычаги при ходьбе, беге и других движениях, выполняют жевательные, глотательные и дыхательные движения, участвуют в артикуляции речи и мимике, вырабатывают тепло.

В теле человека насчитывается около 600 мышц, большинство из которых парные. Масса скелетных мышц у взрослого человека достигает 30-40 % массы тела. У новорожденных и детей на долю мышц приходится до 20-25 % массы тела. В пожилом и старческом возрасте масса мышечной ткани не превышает 20-30 %.

Каждая мышца состоит из большого числа мышечных волокон. Каждое волокно имеет тонкую оболочку - эндомизий, образованный небольшим количеством соединительнотканных волокон. Пучки мышечных волокон окружены рыхлой волокнистой соединительной тканью, получившей название внутреннего перимизия, который отделяет мышечные пучки друг от друга. Снаружи мышца также имеет тонкую соединительнотканную оболочку - наружный перимизий, тесно сращенный с внутренним перимизием проникающими внутрь мышцы пучками соединительнотканных волокон. Соединительнотканные волокна, окружающие мышечные волокна и их пучки, выходя за пределы мышцы, образуют сухожилие.

В каждой мышце разветвляется большое число кровеносных сосудов, по которым кровь приносит к мышечным волокнам питательные вещества и кислород, а уносит продукты обмена веществ. Источником энергии для мышечных волокон является гликоген. В процессе его расщепления вырабатывается аденозинтрифосфорная кислота (АТФ), используемая для мышечного сокращения. Нервы, входящие в мышцу, содержат чувствительные и двигательные волокна.

Скелетные мышцы обладают такими свойствами, как возбудимость, проводимость и сократимость. Мышцы способны под влиянием нервных импульсов возбуждаться, приходить в рабочее (деятельное) состояние. При этом возбуждение быстро распространяется (проводится) от нервных окончаний (эффекторов) до сократительных структур - мышечных волокон. В результате мышца сокращается, укорачивается, приводит в движение костные рычаги.

У мышц различают сократительную часть (брюшко), построенную из поперечнополосатых мышечных волокон, и сухожильные концы (сухожилия), которые прикрепляются к костям скелета. У некоторых мышц сухожилия вплетаются в кожу (мимические мышцы), прикрепляются к глазному яблоку или к соседним мышцам (у мышц промежности). Образованы сухожилия из оформленной плотной волокнистой соединительной ткани и отличаются большой прочностью. У мышц, расположенных на конечностях, сухожилия узкие и длинные. Многие лентовидные мышцы имеют широкие сухожилия, получившие название апоневрозов.

Классификация скелетных мышц

В настоящее время мышцы классифицируют с учетом их формы, строения, расположения и функции.

Форма мышц . Наиболее часто встречаются мышцы веретенообразные и лентовидные (рис. 30). Веретенообразные мышцы располагаются преимущественно на конечностях, где они действуют на длинные костные рычаги. Лентовидные мышцы имеют различную ширину, они обычно участвуют в образовании стенок туловища, брюшной, грудной полостей. Веретенообразные мышцы могут иметь два брюшка, разделенные промежуточным сухожилием (двубрюшная мышца), две, три и четыре начальные части - головки (двуглавые, трехглавые, четырехглавая мышцы). Различают мышцы длинные и короткие, прямые и косые, круглые и квадратные.

Строение мышц . Мышцы могут иметь перистое строение, когда мышечные пучки прикрепляются к сухожилию с одной, двух или нескольких сторон. Это одноперистые, двуперистые, много перистые мышцы. Перистые мышцы построены из большого количества коротких мышечных пучков, обладают значительной силой. Это сильные мышцы. Однако они способны сокращаться лишь на небольшую длину. В то же время мышцы с параллельным расположением длинных мышечных пучков не очень сильные, но они способны укорачиваться до 50 % своей длины. Это ловкие мышцы, они имеются там, где движения выполняются с большим размахом.

По выполняемой функции и по действию на суставы выделяют мышцы-сгибатели и разгибатели, приводящие и отводящие, сжиматели (сфинктеры) и расширители. Различают мышцы по их расположению в теле человека: поверхностные и глубокие, латеральные и медиальные, передние и задние.

3. Вспомогательные аппараты мышц

Свои функции мышцы выполняют с помощью вспомогательных аппаратов, к которым относятся фасции, фиброзные и костно-фиброзные каналы, синовиальные сумки, блоки.

Фасции – это соединительнотканные чехлы мышц. Они разделяют мышцы на мышечные перегородки, устраняют трение мышц одна о другую.

Каналы (фиброзные и костно-фиброзные) имеются в тех местах, где сухожилия перекидываются через несколько суставов (на кисти, стопе). Служат каналы для удержания сухожилий в определенном положении при сокращении мышц.

Синовиальные влагалища образованы синовиальной оболочкой (мембраной) одна пластинка которой выстилает стенки канала, а другая окружает сухожилие и срастается с ним. Обе пластинки срастаются своими концами, образуют замкнутую узкую полость, которая содержит небольшое количество жидкости (синовии) и смачивает скользящие одна о другую синовиальные пластинки.

Синовиальные (слизистые) сумки выполняют функцию, сходную с синовиальными влагалищами. Сумки представляют собой замкнутые, наполненные синовиальной жидкостью или слизью мешочки, расположенные в местах, где сухожилие перекидывается через костный выступ или через сухожилие другой мышцы.

Блоками называют костные выступы (мыщелки, надмыщелки), через которые перекидывается мышечное сухожилие. В результате угол прикрепления сухожилия к кости увеличивается. При этом возрастает сила действия мышцы на кость.

Работа и сила мышц

Мышцы действуют на костные рычаги, приводят их в движение или удерживают части тела в определенном положении. В каждом движении обычно участвует несколько мышц. Мышцы, действующие в одном направлении называют синергистами, действующие в разных направлениях - антагонистами.

На кости скелета мышцы действуют с определенной силой и выполняют при этом работу - динамическую или статическую. При динамической работе костные рычаги изменяют свое положение, перемещаются в пространстве. При статической работе мышцы напрягаются, но длина их не изменяется, тело (или его части) удерживается в определенном неподвижном положении. Такое сокращение мышц без изменения их длины называют изометрическим сокращением. Сокращение мышцы, сопровождающееся изменением ее длины, называют изотоническим сокращением.

С учетом места приложения мышечной силы к костному рычагу и других их характеристик в биомеханике выделяют рычаги первого рода и рычаги второго порядка (рис. 32). У рычага первого рода точка приложения мышечной силы и точка сопротивления (тяжесть тела, масса груза) находятся по разные стороны от точки опоры (от сустава). Примером рычага первого рода может служить голова, которая опирается на атлант (точка опоры). Тяжесть головы (ее лицевая часть) находится по одну сторону от оси атлантозатылочного сочленения, а место приложения силы затылочных мышц к затылочной кости - по другую сторону от оси. Равновесие головы достигается при условии, когда вращающий момент прилагаемой силы (произведение силы затылочных мышц на длину плеча, равную расстоянию от точки опоры до места приложения силы) будет соответствовать вращающему моменту силы тяжести передней части головы (произведение силы тяжести на длину плеча, равную расстоянию от точки опоры до точки приложения тяжести).

У рычага второго рода и точка приложения мышечной силы, и точка сопротивления (силы тяжести) находятся по одну сторону от точки опоры (оси сустава). В биомеханике выделяют два вида рычага второго рода. У первого вида рычага второго рода плечо приложения мышечной силы длиннее плеча сопротивления. Например, стопа человека. Плечо приложения силы трехглавой мышцы голени (расстояние от пяточного бугра до точки опоры - головок плюсневых костей) длиннее плеча приложения силы тяжести тела (от оси голеностопного сустава до точки опоры). В этом рычаге имеется выигрыш в прилагаемой мышечной силе (рычаг длиннее) и проигрыш в скорости перемещения силы тяжести тела (рычаг короче). У второго вида рычага второго рода плечо приложения мышечной силы будет короче плеча сопротивления (приложения силы тяжести). Плечо от локтевого сустава до места прикрепления сухожилия двуглавой мышцы короче, чем расстояние от этого сустава до кисти, где находится приложение силы тяжести. В этом случае имеется выигрыш в и размахе перемещения кисти (длинное плечо) и проигрыш в силе, действующей на костный рычаг (короткое плечо приложения силы).

Сила действия мышцы определяется массой (весом) того груза, который эта мышца может поднять на определенную высоту при своем максимальном сокращении. Такую силу принято называть подъемной силой мышцы. Подъёмная силы мышцы зависит от количества и толщины ее мышечных волокон. У человека мышечная сила составляет 5-10 кг на 1 кв. см физиологического поперечника мышцы. Для морфофункциональной характеристики мышц существует понятие их анатомического и физиологического по перечников (рис. 33). Физиологическим поперечником мышцы называют сумму поперечного сечения (площадей) всех мышечных волокон данной мышцы. Анатомическим поперечником мышцы является величина (площадей) поперечного ее сечения в наиболее широком месте. У мышцы с продольно расположенными волокнами (лентовидной, веретенообразной мышц) величина анатомического и физиологического поперечников будут одинаковыми. При косой ориентации большого числа коротких мышечных пучков, как это имеет место у перистых мышц, физиологический поперечник будет больше анатомического.

Вращающая сила мышцы зависит не только от ее физиологического или анатомического поперечника, или подъемной силы, но и от угла прикрепления мышцы к кости. Чем больше угол, под которым мышца прикрепляется к кости, тем большее действие она может оказать на эту кость. Для увеличения угла прикрепления мышц к кости служат блоки.

Мышцы тела человека

В зависимости от расположения в теле и для удобства изучения выделяют мышцы головы, шеи, туловища; мышцы верхних и нижних конечностей.

Мышцы, расположенные в разных областях тела человека, не только выполняют различные функции, но и имеют свои особенности строения. На конечностях с их длинными костными рычагами, приспособленными для передвижения, захватывания и удерживания различных предметов, мышцы имеют, как правило, веретенообразную форму, с продольным или косым расположением мышечных волокон, узкими и длинными сухожилиями. В области туловища, в образовании его стенок, участвуют ленто видные мышцы с широкими плоскими сухожилиями. Такие широкие сухожилия называют апоневрозами. В области головы жевательные мышцы одним своим концом начинаются на неподвижных костях основания черепа, а другим концом прикрепляются к единственной подвижной части черепа - нижней челюсти. Мимические мышцы начинаются на костях черепа и прикрепляются к коже. При сокращении мимических мышц изменяется рельеф кожи лица, формируется мимика.

Внутренних органов, кожи, сосудов.

Скелетные мышцы совместно со скелетом составляют опорно-двигательную систему организма, которая обеспечивает поддержание позы и перемещение тела в пространстве. Кроме того, они выполняют защитную функцию, предохраняя внутренние органы от повреждений.

Скелетные мышцы являются активной частью опорно-двигательного аппарата, включающего также кости и их сочленения, связки, сухожилия. Масса мышц может достигать 50% общей массы тела.

С функциональной точки зрения к двигательному аппарату можно отнести и моторные нейроны, посылающие нервные импульсы к мышечным волокнам. Тела моторных нейронов, иннервирующих аксонами скелетную мускулатуру, располагаются в передних рогах спинного мозга, а иннервирующих мышцы челюстно-лицевой области — в моторных ядрах ствола мозга. Аксон мотонейрона при входе в скелетную мышцу ветвится, и каждая веточка участвует в формировании нервно-мышечного синапса на отдельном мышечном волокне (рис. 1).

Рис. 1. Разветвления аксона моторного нейрона на аксонные терминалы. Электронограмма

Рис. Строение скелетной мышцы человека

Скелетные мышцы состоят из мышечных волокон, которые объединяются в мышечные пучки. Совокупность мышечных волокон, иннервируемых веточками аксона одного моторного нейрона, называют двигательной (или моторной) единицей. В глазных мышцах 1 двигательная единица может содержать 3-5 мышечных волокон, в мышцах туловища — сотни волокон, в камбаловидной мышце — 1500-2500 волокон. Мышечные волокна 1 двигательной единицы имеют одинаковые морфофункциональные свойства.

Функциями скелетных мышц являются:

  • передвижение тела в пространстве;
  • перемещение частей тела относительно друг друга, в том числе осуществление дыхательных движений, обеспечивающих вентиляцию легких;
  • поддержание положения и позы тела.

Скелетные мышцы вместе со скелетом составляют опорно-двигательную систему организма, которая обеспечивает поддержание позы и перемещение тела в пространстве. Наряду с этим скелетные мышцы и скелет выполняют защитную функцию, предохраняя внутренние органы от повреждения.

Кроме того, поперечно-полосатые мышцы имеют значение в выработке тепла, поддерживающего температурный гомеостаз, и в депонировании некоторых питательных веществ.

Рис. 2. Функции скелетных мышц

Физиологические свойства скелетных мышц

Скелетные мышцы обладают следующими физиологическими свойствами.

Возбудимость. Обеспечивается свойством плазматической мембраны (сарколеммы) отвечать возбуждением на поступление нервного импульса. Из-за большей разности потенциала покоя мембраны поперечно-полосатых мышечных волокон (Е 0 около 90 мВ) возбудимость их ниже, чем нервных волокон (Е 0 около 70 мВ). Амплитуда потенциала действия у них больше (около 120 мВ), чем у других возбудимых клеток.

Это позволяет на практике достаточно легко регистрировать биоэлектрическую активность скелетных мыши. Длительность потенциала действия составляет 3-5 мс, что определяет короткую продолжительность фазы абсолютной рефрактерности возбужденной мембраны мышечных волокон.

Проводимость. Обеспечивается свойством плазматической мембраны формировать локальные круговые токи, генерировать и проводить потенциал действия. В результате потенциал действия распространяются по мембране вдоль мышечного волокна и вглубь по поперечным трубочкам, формируемым мембраной. Скорость проведения потенциала действия составляет 3-5 м/с.

Сократимость. Представляет собой специфическое свойство мышечных волокон изменять свою длину и напряжение вслед за возбуждением мембраны. Сократимость обеспечивается специализированными сократительными белками мышечного волокна.

Скелетные мышцы обладают также вязкоэластическими свойствами, имеющими важное значение для расслабления мышц.

Рис. Скелетные мышцы человека

Физические свойства скелетных мышц

Скелетные мышцы характеризуются растяжимостью, эластичностью, силой и способностью совершать работу.

Растяжимость - способность мышцы изменять длину под действием растягивающей силы.

Эластичность - способность мышцы восстанавливать первоначальную форму после прекращения действия растягивающей или деформирующей силы.

- способность мышцы поднимать груз. Для сравнения силы различных мышц определяют их удельную силу путем деления максимальной массы на число квадратных сантиметров ее физиологического сечения. Сила скелетной мышцы зависит от многих факторов. Например, от числа двигательных единиц, возбуждаемых в данный момент времени. Также она зависит от синхронности работы двигательных единиц. Сила мышцы зависит и от исходной длины. Существует определенная средняя длина, при которой мышца развивает максимальное сокращение.

Сила гладких мышц тоже зависит от исходной длины, синхронности возбуждения мышечного комплекса, а также от концентрации ионов кальция внутри клетки.

Способность мышцы совершать работу. Работа мышцы определяется произведением массы поднятого груза на высоту подъема.

Работа мышц возрастаете увеличением массы поднимаемого груза, но до определенного предела, после которого увеличение груза приводит к уменьшению работы, т.е. снижается высота подъема. Максимальная работа совершается мышцей при средних нагрузках. Это называется законом средних нагрузок. Величина мышечной работы зависит от числа мышечных волокон. Чем толще мышца, тем больший груз она может поднять. Длительное напряжение мышцы приводит к ее утомлению. Это обусловлено истощением энергетических запасов в мышце (АТФ, гликоген, глюкоза), накоплением молочной кислоты и других метаболитов.

Вспомогательные свойства скелетной мускулатуры

Растяжимость — это способность мышцы изменять свою длину под действием растягивающей ее силы. Эластичность — способность мышцы принимать свою первоначальную длину после прекращения действия растягивающей или деформирующей силы. Живая мышца обладает малой, но совершенной эластичностью: уже небольшая сила способна вызвать относительно большое удлинение мышцы, а возвращение ее к первоначальным размерам является полным. Это свойство очень важно для осуществления нормальных функций скелетных мышц.

Сила мышцы определяется максимальным грузом, который мышца в состоянии поднять. Для сравнения силы различных мышц определяют их удельную силу, т.е. максимальный груз, который мышца в состоянии поднять, делят на число квадратных сантиметров ее физиологического поперечного сечения.

Способность мышцы совершать работу. Работа мышцы определяется произведением величины поднятого груза на высоту подъема. Работа мышцы постепенно увеличивается с увеличением груза, но до определенного предела, после которого увеличение груза приводит к уменьшению работы, так как снижается высота подъема груза. Следовательно, максимальная работа мышцей производится при средних величинах нагрузок.

Утомление мышц. Мышцы не могут работать беспрерывно. Длительная работа приводит к снижению их работоспособности. Временное понижение работоспособности мышцы, наступающее при длительной работе и исчезающее после отдыха, называется утомлением мышцы. Принято различать два вида утомления мышц: ложное и истинное. При ложном утомлении утомляется не мышца, а особый механизм передачи импульсов с нерва на мышцу, называемый синапсом. В синапсе истощаются резервы медиаторов. При истинном утомлении в мышце происходят следующие процессы: накопление недоокисленных продуктов распада питательных веществ вследствие недостаточного поступления кислорода, истощение запасов источников энергии, необходимой для мышечного сокращения. Утомление проявляется уменьшением силы сокращения мышцы и степени расслабления мышцы. Если мышца на некоторое время прекращает работу и находится в состоянии покоя, то восстанавливается работа синапса, а с кровью удаляются продукты обмена и доставляются питательные вещества. Таким образом, мышца вновь приобретает способность сокращаться и производить работу.

Одиночное сокращение

Раздражение мышцы или иннервирующего ее двигательного нерва одиночным стимулом вызывает одиночное сокращение мышцы. Различают три основные фазы такого сокращения: латентная фаза, фаза укорочения и фаза расслабления.

Амплитуда одиночного сокращения изолированного мышечного волокна от силы раздражения не зависит, т.е. подчиняется закону «все или ничего». Однако сокращение целой мышцы, состоящей из множества волокон, при ее прямом раздражении зависит от силы раздражения. При пороговой силе тока в реакцию вовлекается лишь небольшое число волокон, поэтому сокращение мышцы едва заметно. С увеличением силы раздражения число волокон, охваченных возбуждением, возрастает; сокращение усиливается до тех пор, пока все волокна не оказываются сокращенными («максимальное сокращение») — этот эффект называется лестницей Боудича. Дальнейшее усиление раздражающего тока на сокращение мышцы не влияет.

Рис. 3. Одиночное сокращение мышцы: А — момент раздражения мышцы; а-6 — скрытый период; 6-в — сокращение (укорочение); в-г — расслабление; г-д — последовательные эластические колебания.

Тетанус мышцы

В естественных условиях к скелетной мышце из центральной нервной системы поступают не одиночные импульсы возбуждения, которые служат для нее адекватными раздражителями, а серии импульсов, на которые мышца отвечает длительным сокращением. Длительное сокращение мышцы, возникающее в ответ на ритмическое раздражение, получило название тетанического сокращения, или тетануса. Различают два вида тетануса: зубчатый и гладкий (рис. 4).

Гладкий тетанус возникает, когда каждый последующий импульс возбуждения поступает в фазу укорочения, а зубчатый - в фазу расслабления.

Амплитуда тетанического сокращения превышает амплитуду одиночного сокращения. Академик Н.Е. Введенский обосновал изменчивость амплитуды тетануса неодинаковой величиной возбудимости мышцы и ввел в физиологию понятия оптимума и пессимума частоты раздражения.

Оптимальной называется такая частота раздражения, при которой каждое последующее раздражение поступает в фазу повышенной возбудимости мышцы. При этом развивается тетанус максимальной величины (оптимальный).

Пессимальной называется такая частота раздражения, при которой каждое последующее раздражение осуществляется в фазу пониженной возбудимости мышцы. Величина тетануса при этом будет минимальной (пессимальной).

Рис. 4. Сокращение скелетной мышцы при разной частоте раздражения: I — сокращение мышцы; II — отметка частоты раздражения; а — одиночные сокращения; б- зубчатый тетанус; в — гладкий тетанус

Режимы мышечных сокращений

Для скелетных мышц характерны изотонический, изометрический и смешанный режимы сокращения.

При изотоническом сокращении мышцы изменяется ее длина, а напряжение остается постоянным. Такое сокращение происходит в том случае, когда мышца не преодолевает сопротивления (например, не перемещает груз). В естественных условиях близкими к изотоническому типу сокращениями являются сокращения мышц языка.

При изометрическом сокращении в мышце во время ее активности нарастает напряжение, но из-за того, что оба конца мышцы фиксированы (например, мышца пытается поднять большой груз), она не укорачивается. Длина мышечных волокон остается постоянной, меняется лишь степень их напряжения.

Сокращаются по аналогичным механизмам.

В организме сокращения мышц никогда не бывают чисто изотоническими или изометрическими. Они всегда имеют смешанный характер, т.е. происходит одновременное изменение и длины, и напряжения мышцы. Такой режим сокращения называется ауксотоническим, если преобладает напряжение мышцы, или ауксометрическим, если преобладает укорочение.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!