Упражнения. Питание. Диеты. Тренировки. Спорт

Нервно мышечные соединения и синапсы. Физиологические свойства синапсов, ихклассификация. Из чего состоит синапс

Нервную систему можно разделить на центральную и периферическую.

Главными функциями нервной системы будут являться:

- сенсорная (обеспечивает восприятие раздражений из внешней или внутренней среды, эти раздражения воспринимаются чувствительными окончаниями),

- проводниковая (проведение нервных импульсов в центральную нервную систему или из нее),

- интегративная функция (объединение тех сигналов, которые поступают в организм и выбор наиболее значимого раздражителя в данный момент, на который будет формироваться ответная реакция)

- рефлекторная функция (большинство ответных реакций проявляется в двигательной форме),

- моторная функция , обеспечивающая эти реакции.

Наряду с двигательными реакциями могут присутствовать секреторные реакции. Эти функции связаны с работой нервных клеток.

Нейрон. В нейроне различают тело клетки и 2 вида отростков (короткие ветвящиеся - дендриты. Предназначены для передачи информации к телу клетки. От тела клетки отходит один длинный отросток - аксон. Аксон образует конечные терминали, которые вступают в контакт с органами) . Тело нервной клетки имеет субклеточные структуру. Эндоплазматическая сеть (гладкая и гранулярная). Гранулы на гранулярной сети - рибосомы, где идет синтез белка. Гранулярная сеть является важным показателем состояния нейрона. В нейроне содержатся нейрофиламенты и нейротрубочки . Нейрофиламенты уходят из тела клетки в отростки. Клетки образуют связь нервной системы с глиальными клетками.

Отростки нервных клеток входят в состав периферических нервов. Нейроны по своей функции могут быть чувствительными (афферентные), двигательные (эфферентные), вставочные и нейросекреторные . Место отхождения аксона от тела клетки называется аксонными холмиком . Эта область нейрона обладает наибольшей чувствительностью.

Строение нервного волокна . Основной частью нервного волокна будет являться осевой цилиндр, который покрыт снаружи плазматической мембраной, а внутри осевого цилиндра находится аксоплазма, в которой проходят нейрофиламенты (микротрубочки) диаметр составляет 10 нанометров, а микротрубочки достигают 23 нанометров.

Диаметр нервного волокна колеблется от 0.5, до 50 микрометров. Осевой цилиндр покрыт оболочкой. Различают 2 разновидности оболочек (швановская и миелиновая оболочки)

В ходе эмбрионального развития осевой цилиндр аксона погружается в складку, образованную швановской клеткой. Таким образом, происходит образование швановской оболочки.

Если нервное волокно имеет только швановскую оболочку, то такие волокна относят к безмиелиновым . У других аксонов швановские клетки начинают закручиваться спиралевидно. При этом вокруг осевого цилиндра формируют слои мембран швановской клетки. Ядро и цитоплазма швановской клетки отходят к периферии. Таким образом формируется миелиновая оболочка , где осевой цилиндр оказывает покрытым миелиновой оболочкой. Миелиновая оболочка покрывает не на всем протяжении, а отдельными муфтами, протяженность которых составляет 1-2 мм. В мягких волокнах на стыке двух соседей остаются участки мембраны, не покрытые миелиновой оболочкой. Эти участки называются перехватами Ренье . Швановские клетки принимают участие в обменных процессах и в росте осевого цилиндра. Миелиновая оболочка образуется из липидов мембран. Она обладает изолирующими свойствами. Нервное волокно приобретает изоляционную оболочку. Она предназначена для проведения нервного импульса.

По аксоплазме и по нитям и трубочкам происходит транспорт веществ . Транспорт может идти в двух направлениях:

От тела клетки - антероградный транспорт .

К телу клетки - ретроградный транспорт .

По скорости переноса веществ.

По аксоплазме (1-2 мм в сутки)

По трубочкам (400 мм с сутки)

Разрыв волокна приводит к тому, что периферическая часть начинает быстро погибать. В ней развиваются процессы дегенерации. Уже через 2-3 дня нервное волокно утрачивает способность проводить возбуждение. Затем происходит распад осевого цилиндра, распадается миелиновая оболочка. И на месте бывшего волокна остается только тяж швановских клеток. Восстановление нервного волокна возможно из центрального отростка. В окончании центрального отростка возникают колбы роста , которые растут на 1 мм за сутки.

Физиологические свойства.

Как клетки возбудимой ткани: возбудимость и проводимость.

Возбудимость нервного волокна - это способность нервного волокна проводить импульс.

Сальваторное проведение нервного импульса.

Скорость проведения в мякотных волокнах будет возрастать, так как используется не вся мембрана. Чем больше диаметр нервного волокна, тем больше протяженность между оболочками.

По мере прохождения импульса не изменяется амплитуда (бездекрементное ). У холоднокровных животных сигнал может угасать.

Для проведения нервного импульса должна быть морфологическая целостность нерва.

Возбуждение проводится с двух сторон.

Закон изолированного проведения . Каждое нервное волокно проводит возбуждение изолированно. Это позволяет не распространяться импульсу в поперечном направлении.

Нервно-мышечный синапс.

Нервно-мышечный синапс - это область контакта нервного волокна с мышцами . Подходя к мышце аксон теряет миелиновую оболочку и распадается на концевые терминали (от 5 до 20) и мембраны осевого цилиндра вступают в контакт с мышечными волокнами и формируют синаптические связки.

В структуре синапса выделяют 3 элемента :

1. Ресенаптическая мембрана (мембрана осевого цилиндра)

2. Постсинаптическая мембрана (производная мембрана мышечного волокна). Эта мембрана образует складки, которые увеличивают ее поверхность.

3. Между пре- и постсинаптической мембраной находится межсинаптическая щель (2-50 нм).

В пресинаптической мембране присутствуют пузырьки, содержащие медиаторы, участвующие в проведении возбуждения. Диаметр пузырьков составляет до 50 нм. В каждом пузырьке находится до 10 000 ацетил-хориновых молекул (1 квант).

Кроме пузырьков в пресинаптической мембране содержатся митохондрии. В них идет синтез медиаторов.

Пресинаптическая мембрана обладает чувствительностью к действию электрического тока. Постсинаптическая мембрана имеет рецепторы, которые называются хоринорецепторами . Их количество в одном синапсе может достигать 40 млн. Эти рецепторы представляют собой интегральные белки, которые воспринимают действие медиатора. При взаимодействии медиатора с рецептором открываются ионные каналы, способные пропускать ионы натрия и калия (больше ионов натрия). Рецепторы также возбуждаются при действии никотина. Эта мембрана не чувствительна к действию электрического тока.

Холиностераза - вызывает разрушение медиатора.

Проведение возбуждения через синапс имеет следующие особенности :

Передача возбуждения происходит только в одном направлении.

В этом проведении возбуждения участвует химический посредник.

Задержка проведения возбуждения.

Курар - блокирует хоринорецептор, что делает невозможным передачу возбуждения.

Бунгаротоксин и кобротоксин необратимо блокируют рецепторы и наступает гибель.

Механизм прохождения возбуждения через синапс.

Потенциал концевой пластики отличается от потенциала нерва следующими принципами:

Не подчиняется закону "все или ничего"

Его амплитуда имеет градуальную зависимость от количества медиатора.

Этот потенциал местный, распространяется медленно, с затуханием, не обладает рефроктерностью и, следовательно, способен к суммации. При достижении величины 25-30 мВ этот потенциал способен вызвать потенциал действия уже в мышечном волокне.

Формирование потенциала действия происходит так же, как при прохождении нервного импульса.

По нервному волокну приходит электрических сигнал. Это вызывает изменение в пресинаптической мембране, что приводит к выделению медиатора, который проходит через межсинаптическую щель. Ацетилхолин вызывает появление потенциала концевой пластинки, который будет рождать потенциал действия в мышечном волокне. Распространение потенциала по мышцам приведет к активации сократительного механизма, которые дадут механический эффект.

Некоторые заболевания вызывают разрушение хоринорецепторов, что приводит к слабости мышц. Если двигательный нерв повреждается, то количество чувствительных рецепторов возрастает.

Структурное образование, обеспечивающее переход возбуждения с нервного волокна на иннервируемую им клетку - мышечную, нервную или железистую, получило название синапса .

Электронномикроскопические исследования выявили, что все синапсы как в центральной нервной системе, так и на периферии состоят из трёх основных элементов: пресинаптической мембраны, постсинаптической мембраны и синаптической щели (рис. 161 ).

Рис. 161. Взаимоотношения между нервным волокном, нервным окончанием и скелетным мышечным волокном (схема). 1 - миелинизированное нервное волокно; 2 - нервное окончание с пузырьками медиатора: 3 - постсинаптическая мембрана мышечного волокна; 4 - синаптическая щель; 5 - внесинаптическая мембрана мышечного волокна; 6 - миофибриллы; 7 - саркоплазма; 8 - потенциал действия нервного волокна; 9 - потенциал концевой пластинки (постсинаптический потенциал); 10 - потенциал действии мышечного волокна.

Пресинаптической мембраной называется мембрана, покрывающая нервное окончание. Последнее представляет собой своеобразный нейросекреторный аппарат. Здесь вырабатывается и выделяется медиатор, осуществляющий возбуждающее или тормозное действие на иннервируемую клетку.

В состоянии покоя медиатор содержится в так называемых синаптических пузырьках, отчетливо видимых на электронных микрофотографиях нервных окончаний (см. схему на рис. 161 ). При деполяризации пресинаптической мембраны эти пузырьки лопаются, медиатор освобождается и изливается через мембрану в синаптическую щель. Ширина последней составляет примерно 200-500 Å. Она заполнена межклеточной жидкостью, которая по солевому составу приближается к солевому составу плазмы крови. Медиатор быстро диффундирует через щель, воздействуя на мембрану иннервируемой (мышечной, нервной или железистой) клетки.

Та часть мембраны этой клетки, которая непосредственно граничит с нервным окончанием, называется постсинаптической мембраной (в нервно-мышечном соединении нервное окончание и постсинаптическую мембрану называют часто концевой, или двигательной, пластинкой). Постсинаптическая мембрана по своим свойствам отличается от мембраны, покрывающей остальную часть клетки. Главное отличие состоит в том, что она обладает очень высокой химической чувствительностью к медиатору и невозбудима по отношению к электрическому току.

На взаимодействии медиатора с постсинаптической мембраной и основан механизм сннаптической передачи возбуждения.

Наличие химического звена в механизме этой передачи делает понятным два общих свойства синапсов:

  1. односторонность проведения возбуждения через синапсы (в отличие от двустороннего проведения в нервных волокнах)
  2. наличие синаптической задержки.

Односторонность проведения в нервно-мышечных синапсах связана с тем, что медиатор, выделяющийся нервным окончанием, возбуждает постсинаптическую мембрану мышечного волокна, железистой клетки и нервной клетки. Потенциал же действия, возникающий в мышечном волокне, в нервной или железистой клетке, вследствие наличия синаптической щели не может возбудить нервные окончания и нервные волокна.

Синоптическая задержка, т. е. замедление проведения возбуждения при передаче через синапс, определяется главным образом временем диффузии медиатора от мембраны нервного окончания к мембране мышечного волокна. В нервно-мышечном соединении синаптическая задержка равна примерно 1-3 мсек. В нервных окончаниях в гладкой мышце синаптическая задержка больше, чем в нервных окончаниях в скелетной мышце.

Страница 2 из 3

Нервно-мышечный синапс

Физиология нервно-мышечных синапсов рассмотрена в главах 4 (см. рис. 4–8) и 6 (см. рис. 6–2 в статье Синапсы и 6–3 в статье Организация и функция синапса ).

Как и любой синапс, нервно-мышечное соединение состоит из трех частей: пресинаптической области, постсинаптической области и синаптической щели .

Пресинаптическая область

Двигательная нервная терминаль нервно-мышечного синапса снаружи покрыта шванновской клеткой , имеет диаметр 1–1,5 мкм и образует пресинаптическую область нервно-мышечного синапса. В пресинаптической области в большом количестве присутствуют синаптические пузырьки, заполненные ацетилхолином (5–15 тыс. молекул в одном пузырьке) и имеющие диаметр порядка 50 нм.

Постсинаптическая область

На постсинаптической мембране - специализированной части плазмолеммы мышечного волокна - имеются многочисленные инвагинации, от которых на глубину 0,5–1,0 мкм отходят постсинаптические складки, чем существенно увеличивается площадь мембраны. В постсинаптическую мембрану встроены н?холинорецепторы , их концентрация достигает 20–30 тысяч на 1 мкм 2 .

Постсинаптические н?холинорецепторы (рис. 7–7) Диаметр открытого канала в составе рецептора равен 0,65 нм, что вполне достаточно для свободного прохождения всех необходимых катионов: Na+, K+, Ca2+. Отрицательные ионы, такие как Cl–, не проходят через канал вследствие сильного отрицательного заряда в устье канала.

Рис. 7–7. . А - рецептор не активирован, ионный канал закрыт. Б - после связывания рецептора с ацетилхолином канал кратковременно открывается. Реально через канал проходят преимущественно ионы Na+ в силу следующих обстоятельств: - в среде, окружающей рецептор ацетилхолина, в достаточно больших концентрациях имеется лишь два положительно заряженных иона: во внеклеточной жидкости Na+ и во внутриклеточной жидкости K+; - сильный отрицательный заряд внутренней поверхности мышечной мембраны (от –80 до –90 мВ) притягивает положительно заряженные ионы натрия внутрь МВ, одновременно предотвращая попытки ионов калия двигаться наружу.

Внесинаптические холинорецепторы. Холинорецепторы присутствуют также в мембране мышечного волокна вне синапса, но здесь их концентрация на порядок величины меньше, чем в постсинаптической мембране.

Синаптическая щель

Через синаптическую щель проходит синаптическая базальная мембрана. Она удерживает в области синапса терминаль аксона, контролирует расположение холинорецепторов в виде скоплений в постсинаптической мембране. В синаптической щели также находится фермент ацетилхолинэстераза, расщепляющий ацетилхолин на холин и уксусную кислоту.

Этапы нервно-мышечной передачи

Нервно-мышечная передача возбуждения состоит из нескольких этапов.

  1. ПД по аксону достигает области двигательного нервного окончания.
  2. Деполяризация мембраны нервного окончания приводит к открытию потенциалозависимых Са2+?каналов и входу Са2+ в двигательное нервное окончание.
  3. Повышение концентрации Са2+ приводит к запуску экзоцитоза квантов ацетилхолина из синаптических пузырьков.
  4. Ацетилхолин попадает в синаптическую щель, где путём диффузии достигает рецепторов на постсинаптической мембране. В нервно-мышечном синапсе в ответ на один ПД выделяется около 100–150 квантов ацетилхолина.
  5. Активация н?холинорецепторов постсинаптической мембраны. При открытии каналов н?холинорецепторов возникает входящий Na–ток, что приводит к деполяризации постсинаптической мембраны. Появляется потенциал концевой пластинки, который при достижении критического уровня деполяризации вызывает ПД в мышечном волокне.
  6. Ацетилхолинэстераза расщепляет ацетилхолин и действие выделившийся порции нейромедиатора на постсинаптическую мембрану прекращается.
Надежность синаптической передачи

В физиологических условиях каждый нервный импульс, поступающий в нервно-мышечное соединение, вызывает возникновение потенциала концевой пластинки, амплитуда которого в три раза больше необходимой для возникновения ПД. Появление такого потенциала связано с избыточностью выделения медиатора. Под избыточностью подразумевается выделение в синаптическую щель значительно большего количества ацетилхолина, чем требуется для запуска ПД на постсинаптической мембране. Этим гарантируется, что каждый ПД мотонейрона вызовет реакцию в иннервируемом им МВ.

Вещества, активирующие передачу возбуждения

Холиномиметики. Метахолин, карбахол и никотин оказывают на мышцу тот же эффект, что и ацетилхолин. Различие заключается в том, что эти вещества не разрушаются ацетилхолинэстеразой или разрушаются более медленно, в течение многих минут и даже часов.

Антихолинэстеразные соединения. Неостигмин, физостигмин и диизопропилфлуорофосфат инактивируют фермент таким образом, что имеющаяся в синапсе ацетилхолинэстераза теряет способность гидролизовать ацетилхолин, выделяющийся в концевой двигательной пластинке. В результате происходит накопление ацетилхолина, что в ряде случаев может вызывать мышечный спазм. Это может приводить к смертельным исходам при спазме гортани у курильщиков. Неостигмин и физостигмин инактивируют ацетилхолинэстеразу в течение нескольких часов, после чего их действие проходит, и синаптическая ацетилхолинэстераза восстанавливает свою активность. Диизопропилфлуорофосфат, являющийся нервно-паралитическим газом, блокирует ацетилхолинэстеразу на недели, что делает это вещество смертельно опасным.

Вещества, блокирующие передачу возбуждения
  • Миорелаксанты периферического действия (кураре и курареподобные препараты) широко применяются в анестезиологии. Тубокурарин препятствует деполяризующему действию ацетилхолина. Дитилин приводит к миопаралитическому эффекту, вызывая стойкую деполяризацию постсинаптической мембраны.
  • Ботулотоксин и столбнячный токсин блокируют секрецию медиатора из нервных терминалей.
  • бетта- и гамма-Бунгаротоксины блокируют холинорецепторы.
Нарушения нервно-мышечной передачи
  • Миастения тяжёлая псевдопаралитическая (myasthenia gravis) - аутоиммунное заболевание, при котором образуются АТ к н?холинорецепторам. Циркулирующие в крови АТ связываются с н?холинорецепторами постсинаптической мембраны МВ, препятствуют взаимодействию холинорецепторов с ацетилхолином и угнетают их функцию, что приводит к нарушению синаптической передачи и развитию мышечной слабости. Ряд форм миастений вызывает появление АТ к кальциевым каналам нервных окончаний в нервно-мышечном соединении.
  • Денервация мышцы. При двигательной денервации происходит значительное увеличение чувствительности мышечных волокон к эффектам ацетилхолина вследствие увеличенного синтеза рецепторов ацетилхолина и их встраивания в плазмолемму по всей поверхности мышечного волокна.

Синапс – это структурно функциональное образование, которое обеспечивает передачу возбуждения или торможения с нервного волокна на иннервируемую клетку.

Мионевральный (нервно-мышечный), образованн аксоном мотонейрона и мышечной клеткой;

Синапс состоит из трех основных компонентов:

    Пресинаптическая мембрана является окончанием отростка нервной клетки. Внутри отростка в непосредственной близости от мембраны имеется скопление пузырьков (гранул), содержащих тот или иной медиатор. Пузырьки находятся в постоянном движении.

    Постсинаптическая мембрана является частью клеточной мембраны иннервируемой ткани. Постсинаптическая мембрана в отличие от пресинаптической имеет белковые хеморецепторы к биологически активным (медиаторам, гормонам), лекарственным и токсическим веществам. Важная особенность рецепторов постсинаптической мембраны – их химическая специфичность, т.е. способность вступать в биохимическое взаимодействие только с определенным видом медиатора.

    Синаптическая щель представляет собой пространство между пре- и постсинаптичекой мембранами, заполненное жидкостью, близкой по составу к плазме крови. Через нее медиатор медленно диффундирует от пресинаптической мембраны к постсинаптической.

Моторный аксон, подходя к мышце, теряет миелиновую оболочку и делится на терминальные веточки, каждая из которых подходит к отдельному мышечному веретену. Нервная клетка вместе с сарколеммой мышечного волокна образует структуру, которую называют нервно-мышечным синапсом. Оголенная часть нерва, обращенная к поверхности мышечного волокна, - это пресинаптическая мембрана; оголенная часть мышечного волокна - это пост-синаптическая мембрана; микропространство между этими мембранами - это синаптичес-кая щель. Поверхность мышечного волокна образует множественные контактные складки, на которых расположены N-холинореиепторы.

22. Определение рефлекса. Компоненты рефлекторной дуги.

Рефлекс – реакция организма на раздражение рецепторов, которая осуществляется с участием ЦНС. Структурной основой рефлекса является рефлекторная дуга.

Рефлекторная дуга (путь рефлекса) - это нейронный цепь от периферического рецептора через ЦНС к периферического эффектора (рабочего органа).

    периферические рецепторы, к которым подходят окончания афферентного (чувствительного) нейрона;

2) афферентный (чувствительный, центростремительный) нейрон – воспринимает изменения внешней или внутренней среды организма. Совокупность рецепторов, раздражение которых вызывает рефлекс, называется рефлексогенной зоной;

3) вставочный (ассоциативный) нейрон, расположенный в спинном или головном мозге – обеспечивает связь с другими отделами ЦНС, переработку и передачу импульсов к эфферентному нейрону;

4) эфферентный (двигательный, центробежный) нейрон – вместе с другими нейронами перерабатывает информацию, сформировывает ответ в виде нервных импульсов;

5) эффектор (исполнитель) – рабочий орган.

Большинство рефлексов замыкается в головном и спинном мозге, и лишь небольшое количество их замыкается вне ЦНС – в вегетативных ганглиях. Вставочных нейронов может быть от одного до множества (в нервных центрах).

Самая простая рефлекторная дуга – моносинаптическая.. Она состоит из двух нейронов – афферентного и эфферентного. Таких рефлексов мало – как правило, это сухожильные рефлексы (например, спинальные миостатические – возникающие в ответ на растяжение мышцы). Чаще дуга рефлекса содержит не менее трех нейронов: афферентный, вставочный и эфферентный. Подобные дуги называют полисинаптическими.

Нервно-мышечный синапс (мионевральный синапс) - эффекторное нервное окончание на скелетном мышечном волокне.

Нервный отросток проходя через сарколемму мышечного волокна утрачивает миелиновую оболочку и образует сложный аппарат с цитолеммой мышечного волокна, образующийся из выпячиваний аксона и цитолеммы мышечного волокна, создавая глубокие "карманы". Синаптическая мембрана аксона и постсинаптическая мембрана мышечного волокна разделены синаптической щелью. В этой области мышечное волокно не имеет поперечной исчерченности, характерно скопление митохондрий и ядер. Терминали аксонов содержат большое количество митохондрий и синаптических пузырьков с медиатором (ацетилхолином).

Механизмы передачи возбуждения в синапсах на примере мионеврального синапса

Мионевральный (нервно-мышечный) синапс – образован аксоном мотонейрона и мышечной клеткой.

Нервный импульс возникает в тригерной зоне нейрона, по аксону направляется к иннервируемой мышце, достигает терминали аксона и при этом деполяризует пресинаптическую мембрану. После этого открываются натриевые и кальциевые каналы, и ионы Ca из среды, окружающей синапс, входят внутрь терминали аксона. При этом процессе броуновское движение везикул упорядочивается по направления к пресинаптической мембране. Ионы Ca стимулируют движение везикул. Достигая пресинаптическую мембрану, везикулы разрываются, и освобождается ацетилхолин (4 иона Ca высвобождают 1 квант ацетилхолина). Синаптическая щель заполнена жидкостью, которая по составу напоминает плазму крови, через нее происходит диффузия АХ с пресинаптической мембраны на постсинаптическую, но ее скорость очень мала. Кроме того, диффузия возможна еще и по фиброзным нитям, которые находятся в синаптической щели. После диффузии АХ начинает взаимодействовать с хеморецепторами (ХР) и холинэстеразой (ХЭ), которые находятся на постсинаптической мембране.

Холинорецептор выполняет рецепторную функцию, а холинэстераза выполняет ферментативную функцию. На постсинаптической мембране они расположены следующим образом:

ХР-ХЭ-ХР-ХЭ-ХР-ХЭ.

ХР + АХ = МПКП – миниатюрные потенциалы концевой пластины.

Затем происходит суммация МПКП. В результате суммации образуется ВПСП – возбуждающий постсинаптический потенциал. Постсинаптическая мембрана за счет ВПСП заряжается отрицательно, а на участке, где нет синапса (мышечного волокна), заряд положительный. Возникает разность потенциалов, образуется потенциал действия, который перемещается по проводящей системе мышечного волокна.

ХЭ + АХ = разрушение АХ до холина и уксусной кислоты.

В состоянии относительного физиологического покоя синапс находятся в фоновой биоэлектрической активности. Ее значение заключается в том, что она повышает готовность синапса к проведению нервного импульса. В состоянии покоя 1–2 пузырька в терминале аксона могут случайно подойти к пресинаптической мембране, в результате чего вступят с ней в контакт. Везикула при контакте с пресинаптической мембраной лопается, и ее содержимое в виде 1 кванта АХ поступает в синаптическую щель, попадая при этом на постсинаптическую мембрану, где будет образовываться МПКН.

В нервно-мышечном синапсе (рис. 382.1) ацетилхолин синтезируется в окончаниях двигательных нервов и накапливается в пузырьках. Когда в окончание приходит потенциал действия, ацетилхолин из 150-200 пузырьков высвобождается в синаптическую щель и связывается с холинорецепторами (холинорецепторы нервно-мышечных синапсов принадлежат к N-холинорецепторам), плотность которых особенно высока на гребнях складок постсинаптической мембраны. Каналы, сопряженные с холинорецепторами, открываются, в клетку входят катионы (в основном Na+), и происходит деполяризация постсинаптической мембраны, называемая потенциалом концевой пластинки. Поскольку этот потенциал в норме всегда сверхпороговый, он вызывает потенциал действия, распространяющийся по мышечному волокну и вызывающий сокращение. Потенциал концевой пластинки короткий, так как ацетилхолин, во-первых, быстро отсоединяется от рецепторов, во-вторых - гидролизуется АХЭ.

Потенциал концевой пластинки аналогичен ВПСП в межнейронных синапсах.

Однако амплитуда одиночного ПКП существенно выше, чем ВПСП, потому что в нервно-мышечном соединении высвобождаемый нейромедиатор попадает на более обширную поверхность, где связывается с гораздо большим количеством рецепторов и где, следовательно, открывается намного больше ионных каналов. По этой причине амплитуда одиночного ПКП обычно бывает более чем достаточна для того, чтобы в смежной с концевой пластинкой области плазматической мышечной мембраны возник местный электрический ток, инициирующий потенциал действия. Затем потенциал действия распространяется по поверхности мышечного волокна посредством такого же механизма (рис. 30.19), что и в мембране аксона. Большинство нервно- мышечных соединений расположены в срединной части мышечного волокна, откуда возникший потенциал действия распространяется к обоим его концам.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!