Упражнения. Питание. Диеты. Тренировки. Спорт

Органические биополимеры. Структурные и функциональные аналогии в строении различных систем

биополимеры (био- + полимеры)

высокомолекулярные соединения биологического происхождения, молекулы которых представляют собой цепочки, образованные из большого числа повторяющихся групп атомов; к Б. относят белки, нуклеиновые кислоты и полисахариды.

Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова.

биополимеры

мн. Высокомолекулярные природные соединения (белки, нуклеиновые кислоты, углеводы), определяющие важнейшие процессы жизнедеятельности организма.

Энциклопедический словарь, 1998 г.

биополимеры

высокомолекулярные (молекулярная масса 103-109) природные соединения белки, нуклеиновые кислоты, полисахариды, а также их производные. Являются структурной основой живых организмов и играют определяющую роль в процессах жизнедеятельности.

Биополимеры

высокомолекулярные природные соединения, являющиеся структурной, основой всех живых организмов и играющие определяющую роль в процессах жизнедеятельности. К Б. относятся белки, нуклеиновые кислоты и полисахариды; известны также смешанные Б. ≈ гликопротеиды, липопротеиды, гликолипиды и др.

Биологические функции Б. Нуклеиновые кислоты выполняют в клетке генетические функции. Последовательность мономерных звеньев (нуклеотидов) в дезоксирибонуклеиновой кислоте ≈ ДНК (иногда в рибонуклеиновой кислоте ≈ РНК) определяет (в форме генетического кода) последовательность мономерных звеньев (аминокислотных остатков) во всех синтезируемых белках и, т. о., строение организма и протекающие в нём биохимические процессы. При делении каждой клетки обе дочерние клетки получают полный набор генов благодаря предшествующему самоудвоению (репликации) молекул ДНК. Генетическая информация с ДНК переносится на РНК, синтезируемую на ДНК как на матрице (транскрипция). Эта т. н. информационная РНК (и-РНК) служит матрицей при синтезе белка, происходящем на особых органоидах клетки ≈ рибосомах (трансляция) при участии транспортной РНК (т-РНК). Биологическая изменчивость, необходимая для эволюции, осуществляется на молекулярном уровне за счёт изменений в ДНК (см. Мутация).

══ Белки выполняют в клетке ряд важнейших функций. Белки-ферменты осуществляют все химические реакции обмена веществ в клетке, проводя их в необходимой последовательности и с нужной скоростью. Белки мышц, жгутиков микробов, клеточных ворсинок и др. выполняют сократительную функцию, превращая химическую энергию в механическую работу и обеспечивая подвижность организма в целом или его частей. Белки ≈ основной материал большинства клеточных структур (в т. ч. в специальных видах тканей) всех живых организмов, оболочек вирусов и фагов. Оболочки клеток являются липопротеидными мембранами, рибосомы построены из белка и РНК и т.д. Структурная функция белков тесно связана с регуляцией поступления различных веществ в субклеточные органеллы (активный транспорт ионов и др.) и с ферментативным катализом. Белки выполняют и регуляторные функции (репрессоры), «запрещая» или «разрешая» проявление того или иного гена. В высших организмах имеются белки ≈ переносчики тех или иных веществ (например, гемоглобин ≈ переносчик молекулярного кислорода) и иммунные белки, защищающие организм от чужеродных веществ, проникающих в организм (см. Иммунитет). Полисахариды выполняют структурную, резервную и некоторые другие функции. Белки и нуклеиновые кислоты образуются в живых организмах путём матричного ферментативного биосинтеза. Имеются теперь и биохимические системы внеклеточного синтеза Б. с помощью ферментов, выделенных из клеток. Разработаны методы химического синтеза белков и нуклеиновых кислот.

Первичная структура Б. Состав и последовательность мономерных звеньев Б. определяют их т. н. первичную структуру. Все нуклеиновые кислоты являются линейными гетерополимерами ≈ сахарофосфатными цепочками, к звеньям которых присоединены боковые группы ≈ азотистые основания: аденин и тимин (в РНК ≈ урацил), гуанин и цитозин; в некоторых случаях (главным образом в т-РНК) боковые группы могут быть представлены другими азотистыми основаниями. Белки ≈ также гетерополимеры; молекулы их образованы одной или несколькими полипептидными цепочками, соединёнными дисульфидными мостиками. В состав полипептидных цепей входит 20 видов различных мономерных звеньев ≈ остатков аминокислот. Молекулярная масса ДНК варьирует от нескольких млн. (у мелких вирусов и бактериофагов) до ста млн. и более (у более крупных фагов); бактериальные клетки содержат по одной молекуле ДНК с молекулярной массой в несколько млрд. ДНК высших организмов может иметь и большую молекулярную массу, но измерить её пока не удалось из-за разрывов в молекулах ДНК, возникающих при их выделении. Рибосомные РНК имеют молекулярную массу от 600 тыс. до 1,1 млн., информационная (и-РНК) ≈ от сотен тысяч до нескольких миллионов, транспортная (т-РНК) ≈ около 25 тыс. Молекулярная масса белков варьирует от 10 тыс. (и менее) до миллионов; в последнем случае, однако, обычно возможно разделение белковой частицы на субъединицы, соединённые между собой слабыми, большей частью гидрофобными, связями.

Конформация, т. е. та или иная пространственная форма молекул Б., определяется их первичной структурой. В зависимости от химического строения и внешних условий молекулы Б. могут находиться либо в одной или в нескольких преимущественных конформациях (обычно встречающиеся в природных условиях нативные состояния Б.: например, глобулярное строение белков, двойная спираль ДНК), либо принимать многие более или менее равновероятные конформации. Белки делят по пространственной структуре на фибриллярные (нитевидные) и глобулярные; белки-ферменты, белки-переносчики, иммунные и некоторые другие имеют, как правило, глобулярную структуру. Для ряда белков ≈ гемоглобин, миоглобин, лизоцим, рибонуклеаза и др. ≈ эта структура установлена во всех деталях (с определением при помощи рентгеноструктурного анализа расположения каждого атома). Она определяется последовательностью аминокислотных остатков и образуется и поддерживается относительно слабыми взаимодействиями между мономерными звеньями полипептидных цепей в водно-солевом растворе (кулоновские и дипольные силы, водородные связи, гидрофобные взаимодействия), а также дисульфидными связями. Глобула белка формируется так, что большинство полярных гидрофильных аминокислотных остатков оказывается снаружи и контактирует с растворителем, а большинство неполярных (гидрофобных) остатков находится внутри и изолировано от взаимодействия с водой. Молекулы белка, обладающие избытком неполярных групп, когда часть из них оказывается на поверхности глобулы, образуют высшую, т. н. четвертичную структуру, при которой несколько глобул агрегируют, взаимодействуя между собой в основном неполярными участками (рис. 1 ). Пространственная структура каждого белка-фермента уникальна и обеспечивает необходимое для его функционирования расположение в пространстве всех звеньев Б., в особенности т. н. активных центров. В то же время она не абсолютно жестка и допускает необходимые в процессе функционирования (при взаимодействии с субстратами, ингибиторами и другими веществами) конформационные сдвиги и изменения.

Пространственная структура нативной ДНК образована двумя комплементарными нитями и представляет собой двойную спираль Крика ≈ Уотсона; в ней противоположные азотистые основания попарно связаны водородными связями ≈ аденин с тимином и гуанин с цитозином. Устойчивость двойной спирали обеспечивается, наряду с водородными связями, также гидрофобным взаимодействием между плоскими кольцами азотистых оснований, расположенных стопкой (стопочное взаимодействие, или стакинг). Нити РНК спирализованы лишь частично. ДНК вирусов, бактериофагов, бактерий, а также митохондриальная в ряде случаев представляет собой замкнутое кольцо; при этом наряду со спиралью Крика ≈ Уотсона наблюдается ещё дополнительная т. н. сверхспирализация.

Денатурация Б. Нарушение нативной пространственной структуры Б. при различных воздействиях (повышение температуры, изменение концентрации металлов, кислотности раствора и др.) называется денатурацией и в ряде случаев обратимо (обратный процесс называется ренатурацией; рис. 2 ). Молекулы Б. ≈ кооперативные системы: поведение их зависит от взаимодействий составляющих частей. Кооперативность молекул Б. определяется тем, что повороты отдельных звеньев из-за внутримолекулярных взаимодействии зависят от конформации соседних звеньев. В основе денатурации Б. при изменении внешних условий обычно лежат кооперативные конформационные превращения (например, переходы a-спираль ≈ b-структура, a-спираль ≈ клубок, b-структура ≈ клубок для полипептидов, переход глобула ≈ клубок для глобулярных белков, переход спираль ≈ клубок для нуклеиновых кислот). В отличие от фазовых переходов (кипение жидкости, плавление кристалла), являющихся предельным случаем кооперативных процессов и происходящих скачком, кооперативные переходы Б. совершаются в конечном, хотя и сравнительно узком, интервале изменений внешних условий. В этом интервале одномерные, линейные молекулы (нуклеиновые кислоты, полипептиды), претерпевающие переход спираль ≈ клубок, разбиваются на чередующиеся спиральные и клубкообразные участки (рис. 3 ).

Переход спираль ≈ клубок в ДНК наблюдается при повышении температуры, добавлении в раствор кислоты или щёлочи, а также под влиянием других денатурирующих агентов. Этот переход в гомополинуклеотидах происходит при нагревании в интервале десятых долей ╟С, в фаговых и бактериальных ДНК ≈ в интервале 3≈5╟С (рис. 3 ), в ДНК высших организмов ≈ в интервале 10≈15 ╟С. Чем выше гетерогенность ДНК, тем шире интервал перехода и меньше способность молекул ДНК к ренатурации. Переход спираль ≈ клубок в различных видах РНК носит менее кооперативный характер (рис. 4 ) и происходит в более широком интервале температурных или других денатурирующих воздействий.

Б. ≈ полимерные электролиты, их пространственная конформация и кооперативные переходы зависят как от степени ионизации молекулы, так и от концентрации ионов в среде, что влияет на электростатические взаимодействия как между отдельными частями молекулы, так и между Б. и растворителем.

Строение и биологические функции Б. Строение Б. ≈ результат длительной эволюции на молекулярном уровне, вследствие чего эти молекулы идеально приспособлены к выполнению своих биологических задач. Между первичной структурой, конформацией Б. и конформационными переходами, с одной стороны, и их биологическими функциями ≈ с другой, существуют тесные связи, исследование которых ≈ одна из главных задач молекулярной биологии. Установление таких связей в ДНК позволило понять основные механизмы репликации, транскрипции и трансляции, а также мутагенеза и некоторых других важнейших биологических процессов. Линейная структура молекулы ДНК обеспечивает запись генетической информации, её удвоение при матричном синтезе ДНК и получение (также путём матричного синтеза) многих копий с одного и того же гена, т. е. молекул и-РНК. Сильные ковалентные связи между нуклеотидами обеспечивают сохранность генетической информации при всех этих процессах. В то же время относительно слабые связи между нитями ДНК и возможность вращения вокруг простых химических связей обеспечивают гибкость и лабильность пространственной структуры, необходимые для разделения нитей при репликации и транскрипции, а также подвижность молекулы и-РНК, служащей матрицей при биосинтезе белка (трансляция). Исследование пространственной структуры и конформационных изменений белков-ферментов на разных стадиях ферментативной реакции при взаимодействии с субстратами и коферментами даёт возможность установить механизмы биокатализа и понять природу огромного ускорения химических реакций, осуществляемого ферментами.

Методы исследования Б. При исследовании строения и конформационных превращений Б. широко используются как очищенные природные Б., так и их синтетические модели, которые проще по строению и легче поддаются исследованию. Так, при изучении белков моделями служат гомогенные или гетерогенные полипептиды (с заданным или случайным чередованием аминокислотных остатков). Моделями ДНК и РНК являются соответствующие синтетические гомогенные или гетерогенные полинуклеотиды. К методам исследования Б. и их моделей относятся рентгеноструктурный анализ, электронная микроскопия, изучение спектров поглощения, оптической активности, люминесценции, методы светорассеяния и динамического двойного лучепреломления, седиментационный метод, вискозиметрия, физико-химические методы разделения и очистки и ряд др. Все методы, разработанные для изучения синтетических полимеров, применимы и к Б. При трактовке свойств Б. и их моделей, закономерностей их конформационных превращений используются также методы теоретической физики (статистической физики, термодинамики, квантовой механики и др.).

В полисахаридах - моносахариды .

Выделяют два типа биополимеров - регулярные.

Примеры употребления слова биополимеры в литературе.

К полиэлектролитам относятся важнейшие биополимеры - белки и нуклеиновые кислоты.

Курс «Молекулярные основы процессов жизнедеятельности»

Развитие биологии в последние десятилетия определяется в основном успехами в изучении молекулярных и клеточных механизмов процессов жизнедеятельности. Школьная программа в значительной степени ориентирована на традиционные направления биологии. Уровень преподавания современных достижений биологии страдает от недостаточной подготовки учителей. Цель предлагаемого курса – предоставить школьному учителю возможность познакомиться с современными представлениями о молекулярных механизмах наиболее важных процессов функционирования живых клеток, причем получить необходимый материал в компактной и доступной форме.
Предлагаемый курс состоит из трех частей. В первой рассматриваются строение наиболее важных биополимеров (углеводов, белков и нуклеиновых кислот), особенности их пространственной структуры и физико-химические механизмы их взаимодействия. Особое внимание уделяется кооперативным взаимодействиям и взаимно комплементарным структурам как основе образования и функционирования клеточных компонентов. Вторая часть посвящена процессам функционирования белков. В ней рассматриваются вопросы образования белковых структур за счет специфических межмолекулярных взаимодействий, структурные перестройки белков при связывании малых молекул как основа движения, узнавания и передачи сигнала, молекулярные механизмы и особенности ферментативного катализа. Третья часть, наибольшая по объему, содержит описание основных процессов, происходящих при биосинтезе молекул полимеров, имеющих уникальную нерегулярную структуру – белков и нуклеиновых кислот. В основе этих процессов лежит матричный синтез по принципу комплементарности. Рассмотрено понятие генетического кода и его основные свойства. Значительное место в этой части занимает рассмотрение структуры рибосом и механизмов происходящих на них процессов биосинтеза белка. В этой части также рассматривается формирование из макромолекул отдельных клеточных структур (хроматина, рибосом) и компонентов клеточных структур.

УЧЕБНЫЙ ПЛАН КУРСА

№ газеты

Учебный материал

Лекция № 1. Основные виды биополимеров

Лекция № 2. Внутримолекулярные и межмолекулярные взаимодействия в биополимерах

Лекция № 3. Нуклеиновые кислоты
Контрольная работа № 1 (срок выполнения – до 15 ноября 2004 г.)

Лекция № 4. Механизмы функционирования белков

Лекция № 5. Генетический код
Контрольная работа № 2 (срок выполнения – до 15 декабря 2004 г.)

Лекция № 6. Биосинтез нуклеиновых кислот

Лекция № 7. Предварительные этапы биосинтеза белка

Лекция № 8. Биосинтез белка и его локализация в клетке

Итоговая работа – разработка урока.
Итоговые работы, сопровождаемые справками из учебного заведения (актами о внедрении), должны быть направлены в Педагогический университет не позднее 28 февраля 2005 г.

Лекция № 1. Основные виды биополимеров

Для того, чтобы понять, как устроены и как функционируют живые организмы, необходимо прежде всего знать, из каких веществ они построены, как эти вещества образуются и как молекулы этих веществ объединяются, чтобы образовать те или иные части живого организма. Эти вопросы изучает биохимия, область биологии, наиболее бурно развивающаяся в настоящее время. Подробное изучение биохимии невозможно без знания химии, особенно органической и физической, и не входит в задачи школьного курса биологии. Мы рассмотрим здесь лишь наиболее важные группы высокомолекулярных веществ, входящих в состав живого, их функции в живых организмах и основные пути биосинтеза этих веществ.

Органические соединения, входящие в состав живого, исключительно многообразны, а многие из них очень сложны. Даже в таких простых существах, как бактерии, содержится более 5 тыс. органических веществ, из них около 4 тыс. составляют различные белки и нуклеиновые кислоты. В сложных многоклеточных организмах количество этих веществ на два порядка больше.

Все органические вещества могут быть разделены на две группы: низкомолекулярные вещества и полимеры. Размеры низкомолекулярных веществ обычно составляют десятки и сотни дальтон, тогда как полимеры достигают массы в миллионы и даже миллиарды дальтон. Однако такие вещества построены из многократно повторяющихся единиц – мономеров, разнообразие которых не очень велико, что значительно упрощает их образование в клетке.

Количество мономеров в молекуле полимера может варьировать от нескольких штук до десятков миллионов. Например, глутатион – пептид, играющий важную роль в окислительно-восстановительных процессах, – состоит всего из трех аминокислот, а молекула ДНК, образующая единственную хромосому бактерий, построена из более чем 3 млн нуклеотидов.

Полимер может состоять из одинаковых мономеров. Такие полимеры называют гомополимерами . К ним относятся, например, крахмал и целлюлоза. Однако большая часть биологических полимеров построена из нескольких типов мономеров. Они носят название гетерополимеров .

Мономеры, входящие в состав гетерополимеров, относятся, как правило, к одному классу веществ и соединяются одинаковыми связями. Примерами гетерополимеров могут служить гиалуроновая кислота, состоящая их мономеров двух типов, и белки, построенные из мономеров более чем 20 различных типов.

Важнейшей характеристикой гетерополимеров является порядок расположения мономеров. Простейшие гетерополимеры состоят из повторяющихся единиц, образованных несколькими мономерами. Если обозначить мономеры буквами A, B и C, то из них может быть образовано большое число различных гетерополимеров, например: ABABABAB, ABCABCABC, AABCAABCAABC, ABBCCABBCCABBCC. В первом полимере повторяющееся звено AB, во втором – ABC, в третьем – AABC, в четвертом – ABBCС. Полимеры, состоящие из повторяющихся звеньев, называются регулярными .

Регулярных полимеров довольно много среди полисахаридов. Так, уже упоминавшаяся гиалуроновая кислота состоит из чередующихся остатков двух типов – ацетилглюкозамина и глюкуроновой кислоты.

Гораздо чаще в живых организмах встречаются нерегулярные гетерополимеры, в которых мономеры не образуют повторяющихся единиц. Для каждого такого полимера характерна своя уникальная последовательность мономеров. Это делает возможным существование огромного многообразия таких соединений. Если в полимер входит M видов мономеров, а степень полимерности равна N, то количество возможных вариантов гетерополимера равно MN.

Мономеры в биополимерах соединяются, как правило, одинаковыми связями. Чаще всего такое соединение происходит за счет отнятия OH-группы от одного мономера и протона от второго. Такие связи могут разрываться с присоединением воды (реакция гидролиза), что используется в живых организма для уничтожения ненужных полимеров.

При таком связывании мономеры неэквивалентны, поэтому у связей, а следовательно и у полимеров, возникает направление. Часто говорят о начале и конце молекулы, при этом началом принято считать тот конец полимера, с которого начинается его синтез в клетке.

Важно заметить, что образование полимеров в живых клетках идет по другому пути и не связано с выделением воды, что делает возможным синтез полимеров в водной среде живой клетки. Наиболее часто в биополимерах встречаются сложноэфирная, гликозидная (ацетальная) и пептидная (амидная) связи.

Еще одной характеристикой полимеров является их разветвленность. Если каждый мономер образует две связи с соседними мономерами, то получается линейный полимер. Такими полимерами являются белки, нуклеиновые кислоты, многие полисахариды. Если же к мономеру присоединяется три или более других мономера, то образуется разветвленная структура. Примерами разветвленных полисахаридов являются крахмал и гликоген.

Разветвление обычно происходит лишь на небольшой части мономеров, поэтому разветвленные полимеры могут различаться по частоте ветвления. Длина ответвлений также может быть разной: от одного до десятков и сотен мономеров. Встречаются полимеры, в которых основная цепь состоит из мономеров одного типа, а боковые – из мономеров другого типа.

Мономерами, из которых построены биополимеры, являются, как правило, обычные для живых организмов низкомолекулярные вещества. Поэтому часто мономеры и образующиеся из них полимеры объединяют в отдельные классы биологических веществ. Наиболее важными являются четыре таких класса: 1) углеводы; 2) липиды; 3) аминокислоты и белки; 4) нуклеотиды и нуклеиновые кислоты. Рассмотрим особенности строения этих классов соединений.

Углеводы представляют собой соединения с общей формулой C n H 2m O m или C n (H 2 O) m , т.е. как бы состоящих из углерода и воды.

Углеводы делятся на две группы: простые углеводы, или моносахариды, и сложные углеводы, или полисахариды. Простые углеводы представляют собой многоатомные спирты, содержащие гидроксильную группу у каждого атома углерода, кроме одного, несущего альдо- или кетогруппу. Эта группа обычно взаимодействует с одной из спиртовых групп молекулы, образуя циклическую форму (см. рисунок).

Моносахариды, обычно встречающиеся в живых организмах, содержат 5 или 6 атомов углерода. Моносахариды хорошо растворимы в воде, образуют кристаллы и имеют сладкий вкус. Многообразие моносахаридов связано в основном с оптической изомерией, или стереоизомерией. Так, глюкоза, манноза и галактоза содержат одни и те же атомы и группы атомов, связанные в одинаковом порядке, но по-разному расположенные в пространстве. Наиболее распространенными моносахаридами являются глюкоза и фруктоза.

Молекулы моносахаридов могут образовывать связи между собой с потерей молекулы воды. В результате образуются полисахариды. Полисахариды нерастворимы в воде и не имеют сладкого вкуса. Так как к одному остатку моносахарида может быть присоединено несколько других остатков, полисахариды могут иметь разветвленную структуру. В живых организмах наиболее широко распространены полимеры глюкозы – крахмал, гликоген и целлюлоза.

Целлюлоза представляет собой линейный полимер, содержащий примерно 10 тыс. остатков глюкозы. Молекулы целлюлозы располагаются параллельно друг другу и образуют между собой множество водородных связей. Так формируются прочные пучки молекул – мицеллы, которые объединяются в микрофибриллы. Такое строение придает целлюлозе высокую механическую прочность. Целлюлоза встречается в основном у растений, где составляет основу клеточных стенок. В форме целлюлозы у растений находится до 50% углеводов.

Близок по строению к целлюлозе хитин . В нем мономерной единицей является N-ацетилглюкозамин – производное глюкозы, в котором один гидроксил заменен на аминогруппу, к которой присоединяется остаток уксусной кислоты. Хитин служит основой клеточных стенок грибов и образует наружный скелет у членистоногих.

Крахмал , как и целлюлоза, состоит только из остатков глюкозы. В состав крахмала входит два типа полимеров: линейный, называемый амилозой, и разветвленный – амилопектин. Амилоза отличается от целлюлозы типом связи между остатками глюкозы, поэтому она не образует мицелл и не отличается механической прочностью. Амилоза может связывать йод, образуя соединение, окрашенное в синий цвет. Молекулы амилозы и амилопектина содержат несколько тысяч остатков глюкозы.

Крахмал служит основным запасным веществом у растений. У животных и грибов эту функцию выполняет гликоген – полисахарид, похожий на амилопектин, но отличающийся большей разветвленностью. Крахмал и гликоген накапливаются в клетках в виде гранул.

У животных встречаются также внеклеточные регулярные гетерополисахариды, такие как гиалуроновая кислота, хондроитины, дерматаны и гепарины. Они составляют значительную часть хрящей, сухожилий и других видов соединительной ткани.

Липидами называются вещества биологического происхождения, растворимые в органических растворителях и не растворимые в воде. В связи со столь расплывчатым определением, в эту группу входят вещества, довольно сильно различающиеся по химическим свойствам. Наиболее важны три группы этих веществ: триглицериды, фосфолипиды и стероиды .
Первая группа представляет собой сложные эфиры жирных кислот и глицерина. Глицерин является трехатомным спиртом. Триглицерид образуется, если к каждой спиртовой группе глицерина присоединяется молекула жирной кислоты. Жирные кислоты состоят из длинного углеводородного радикала и присоединенной к его концу карбоксильной группы. Таким образом, триглицериды можно рассматривать как пример жирных кислот, соединенных глицериновым мостиком.
Фосфолипиды в основном представлены фосфоглицеридами. Они похожи на триглицериды, но вместо одной из жирных кислот содержат фосфорную кислоту. К остатку фосфорной кислоты могут присоединяться различные группы, например, этаноламин или холин.
Стероиды представляют собой систему конденсированных неароматических колец с различными боковыми группами. Их молекулы – довольно жесткие и почти плоские.

Аминокислоты – соединения, содержащие кислотную карбоксильную группу и основную аминогруппу. В живых организмах обнаружено несколько сотен различных аминокислот, однако большинство из них встречается лишь в некоторых видах растений и не входит в состав белков .
В белках встречается 20–30 видов аминокислот. При биосинтезе в белок включается 20 видов аминокислот, а остальные образуются в результате химических модификаций в составе белка.
В белках встречаются только альфа-аминокислоты, т.е. такие, в которых обе группы – карбоксильная и аминогруппа – находятся у одного и того же концевого атома углерода. К этому же атому углерода присоединен атом водорода и радикал, специфический для каждой аминокислоты. Таким образом, этот атом углерода имеет четыре разных заместителя и поэтому является асимметрическим. Это означает, что возможны два разных способа размещения заместителей в пространстве, которые являются зеркально симметричными и ни при каких вращениях молекулы не могут быть совмещены. Этим двум способам размещения заместителей соответствуют два стереоизомера аминокислоты, L- и D-формы, отличающиеся оптической активностью, т.е. способностью поворачивать плоскость поляризации поляризованного света. В белках все аминокислоты относятся к L-ряду. Однако в клеточных стенках бактерий и в некоторых антибиотиках можно обнаружить как L-, так и D-аминокислоты.
Связь между аминокислотами в белках осуществляется через аминогруппу одной аминокислоты и карбоксильную группу другой. Такая связь является частным случаем амидной связи и называется пептидной. В полученном при связывании двух аминокислот соединении – дипептиде – на одном конце находится свободная аминогруппа, а на другом – свободная карбоксильная группа. К этим группам таким же образом могут присоединяться следующие аминокислоты. Это позволяет неограниченно увеличивать длину полимера, называемого полипептидом. Конец полипептида, содержащий аминогруппу, называется N-концом, а содержащий карбоксильную группу – С-концом.

Наличие большого числа мономеров и большая длина полимера приводят к возможности образования огромного количество различных полипептидов. Так, из 20 аминокислот может получиться 20 2 = 400 различных дипептидов, 20 3 = 8000 трипептидов и т.д. Поскольку средний белок содержит несколько сотен мономеров, разнообразие белков практически не ограничено. Если рассматривать полимер из 100 аминокислот, то возможно 20 100 х10 130 видов полимеров. Если взять по одной молекуле каждого вида полимера, то их суммарная масса составит 10 110 т, что значительно больше массы видимой части Вселенной.

По-видимому, все возможные полипептиды такой длины на Земле не могли образоваться за всю ее историю. Однако даже реально существующее в настоящее время многообразие белков крайне велико. Одноименные белки в разных видах организмов обычно отличаются друг от друга хотя бы по одной аминокислоте в последовательности. По современным оценкам каждый вид имеет от 4 до 60 тыс. различных белков. Если принять среднее значение 30 тыс. и общее число видов около 2 млн, то на Земле существует около 60 млрд различных белков.

Вопросы и задания для самостоятельной работы

1. Что такое полимеры?
2. Какие бывают типы полимеров?
3. Чем отличаются регулярные полимеры от нерегулярных?
4. В чем основные различия в структуре целлюлозы и гликогена?
5. Сколько видов аминокислот встречается в белках?
6. Чем обусловлено многообразие белков?

Тема нашей сегодняшней лекции - биополимеры.

Для того, чтобы выяснить, как устроены молекулы, образующие клетки, какова структура молекул, где они находятся в клетке, мы сначала вспомним строение клетки. Вспомнив, из чего состоит живая клетка, и какие функции выполняют те или иные органеллы, мы сможем заполнить следующую табличку. Оказывается, можно провести интересную аналогию с элементами, выполняющими схожие функции у живых организмов и государств. Выделим следующие функции:

  • защиты (внешнюю и внутреннюю);
  • транспортную (веществ и информации);
  • обеспечение клетки энергией и веществами;
  • хранение и передача информации.

За внешнюю защиту у клеток отвечает клеточная мембрана; у организмов - кожа, когти, перья, шерсть; у государств - погранвойска. Внутреннюю защиту клеткам обеспечивает система рестрикции- модификации. Для примера приведем бактериальную клетку. У нее есть специальные ферменты - рестриктазы (в пер. с англ. «ограничивать»), которые разрезают чужеродную ДНК. На собственных ДНК есть специальные химические метки, чтобы рестриктазы смогли их распознать. У организмов в качестве внутренней защиты существует иммунная система, а у государства - МВД, ФСК.

Структурные и функциональные аналогии в строении различных систем

ФУНКЦИЯ

КЛЕТОЧНАЯ ОРГАНЕЛЛА ИЛИ СИСТЕМА

ОРГАН ИЛИ СИСТЕМА ОРГАНОВ

КАСТЫ

ГОСУДАРСТВЕННЫЕ ОРГАНИЗАЦИИ

Защита

Внешняя

клеточная мембрана

кожа, шерсть, когти, перья

кшатрии (воины)

погранвойска

Внутренняя

система рестрикции-модификации*

иммунная система

Обеспечение

Энергией

митохондрии, хлоропласты;

Пищеварительная + дыхательная системы

шудры (ремесленники)

Газпром, АЭС

Веществами

Трансмембранные каналы, лизосомы

Пищеварительная система

с/х, горнодоб. промышленность

Информация

хранение и воспроизведение

ядро, ДНК

мозг, центр. нервная система

брахманы (жрецы)

культура, искусство; школа

Транспорт

Вещества

эндоплазматическая сеть

Пищеварительный тракт, кровь

вайшьи (торговцы)

нефтепровод, транспорт

Информации

нервы, гормоны

почта, телефон, ИНТЕРНЕТ

Обеспечением энергией в животных клетках занимаются митохондрии, а в растительных - хлоропласты, в организмах - пищеварительная и дыхательная системы, в государстве же - организации типа Газпрома и АЭС. Обеспечение клетки веществами идет благодаря трансмембранным каналам, лизосомам, в организме - пищеварительной системе, а в государстве - сельскохозяйственной и др. промышленности.

Хранение и воспроизведение информации на клеточном уровне идет в ядре посредством ДНК, в организме эту функцию имеет мозг, центральная нервная система, в стране - школы, библиотеки, культура, искусство.

Транспортируются вещества в клетке благодаря эндоплазматической сети, в организме - желудочно-кишечному тракту, дыхательной системе, крови; в стране - нефте- и газопроводам, транспорту. Что же касается передачи информации, то в клетке этим занимается матричная РНК; в организме - нервы и гормоны (нервно-гуморальная система). Причем хочется отметить, что нервную систему можно сравнить с адресной доставкой (человек может получить письмо лично, и никто больше об этом не узнает), то есть по нервам можно доставить информацию очень точно к определенной мышце или определенному органу. А гормональную систему можно сравнить со СМИ, то есть она работает как система всеобщего оповещения. В государстве за информацию отвечают почта, телефонная сеть, Интернет и др.

Мы провели аналогию с хорошо известными вам системами (организм и государство), чтобы иметь более абстрактное представление о строении клетки.

В таблице добавлены индийские касты. Касты возникли, как структуры, фиксирующие функциональные особенности разных слоев населения. Кшатрии (воины) выполняют функции защиты; шудры (торговцы и ремесленники) - обеспечения питанием и энергией; брахманы (жрецы) - хранения и воспроизведения информации, вайшьи (торговцы) - транспорт вещества и информации.

Этот раздел есть во всех учебниках биохимии. Он есть в нашем основном учебнике Макеева, а также в учебнике Грина, Стаута, Тейлора; для более фундаментального изучения структуры биомолекул, составляющих клетку можно использовать учебник биохимии Месслера. А также на сайте ФМБФ есть хорошая программа по биохимии, где есть раздел про мономеры и биополимеры клетки

  1. А.В.Макеев. Основы биологии, лекция 1: Атомный и молекулярный состав живых организмов, стр. 5-30

Для более подробного изучения:

  1. Н.Грин, У.Стаут, Д.Тейлор. Биология, том. 1, глава 5: Химические компоненты живого (стр. 151-194)
  2. Д.Месслер. Биохимия, том. 1, глава 2: Молекулы, из которых мы состоим (стр. 67-199).

Основные атомы, составляющие живую клетку - это углерод, водород, кислород, азот и фосфор. Конечно, в полимерах присутствуют и другие вещества (например, сера), но сейчас мы рассмотрим комбинации этих пяти элементов. Как вы знаете, образование биополимеров возможно благодаря тому, что углерод четырехвалентен, способен образовывать 4 связи, и атомы углерода, связываясь друг с другом, могут образовывать длинные цепочки, состоящие из десятков атомов. Мы расскажем о четырех видах биополимеров: белках, нуклеиновых кислотах, липидах и углеводах; как они устроены и чем занимаются.

Белки

Начнем с белков. Белки состоят из мономеров - аминокислот. Каждая аминокислота имеет аминогруппу, связанную с атомом углерода, с этим же атомом связана карбоксильная группа, водород и аминокислотный остаток. Такая конфигурация присутствует во всех аминокислотах. Аминогруппа может быть присоединена к первому за карбоксильной группой атому углерода, или ко второму атому и т.д. Атомы нумеруются греческими буквами, и в зависимости от того, к какому по порядку атому присоединена аминокислота, ее называют альфа-аминокислота, или бета-аминокислота и т.д. В состав белков входят только альфа-аминокислоты.

Напомним, что карбоксильная группа имеет кислотный характер, она диссоциирует на ионы в водном растворе с образованием протона и отрицательно заряженной группы СОО¯, а NH2-группа имеет основной характер, она способна присоединять протон водорода, становясь положительно заряженной. В молекуле аминокислоты протон от карбоксильной группы может переносится на аминогруппу - такие образования называются цвиттер-ионы. В растворе аминокислоты находятся в виде цвиттер-ионов.

Существенно, что молекулы аминокислот могут отличаться в своей пространственной конфигурации. Это явление называется стереизомерией. Эти молекулы называются D- изомерами и L- изомерами. Молекулы являются зеркальным отображением друг друга, и иначе, чем через четвертое измерение они одна в другую перейти не могут. На плоскости тот атом, который находится ближе, перед плоскостью, изображается треугольной стрелкой, тот, что дальше, за плоскостью - пунктирной линией.

В живом организме все аминокислоты - L-изомеры. D-изомеры встречаются довольно редко и имеют определенные функции, например, могут входить в состав антибиотиков.

Всего живая клетка использует 20 аминокислот. Они отличаются строением боковой цепи, как видно из рисунка, могут быть разветвленные цепи, они могут содержать ароматические кольца. Например, у пролина второй углеродный атом израсходовал все свободные связи на ароматическую группу, и поэтому он не обладает такой подвижностью относительно группы С-С, и поэтому в белках, где есть пролин, вращение полипептидной цепи в этих участках ограниченно.


Аминокислоты делят на неполярные, то есть не имеющие заряда и не имеющие групп, которые можно было бы ионизировать, полярные не заряженные и пять кислот относятся к заряженным: это 2 кислоты, которые содержат вторую карбоксильную группу, которая может ионизироваться и нести на себе отрицательный заряд, и три аминокислоты имеющие дополнительные аминогруппы, которые несут в растворах с собой положительный заряд и используются в белках для того, чтобы зарядить необходимые части молекулы. Изменение заряда белковой молекулы может оказать большое влияние на структуру и функцию.

Последовательность аминокислот в белке составляет его первичную структуру.

Как же они соединяются? Аминокислоты способны взаимодействовать друг с другом, образуя пептидную связь. При этом молекула воды уходит, а углерод соединяется с азотом - собственно пептидная связь. Понятно, что следующая карбоксильная группа может прореагировать с аминогруппой другой кислоты и таким образом образуется полипептидная цепочка, что и называется первичной структурой белка. При записи первичной структуры аминокислоты обозначают либо трехбуквенным кодом, по первым трем буквам названия, либо используют однобуквенный код. В базах данных первичная структура белка записывается обычно однобуквенным кодом.

В зависимости от того, какие аминокислоты образовали цепочку, он может свернуться в пространстве и принять ту или иную пространственную структуру, которая называется вторичной структурой белка. Полипептидная цепочка сворачивается в пространстве в различные структуры, например спираль с определенными характеристиками, с определенным шагом (α-спираль), или вытянутую структуру (β-структура). β- спирали могут взаимодействовать между собой, образуя целые белковые листы. α- спирали образуют достаточно жесткие цилиндрические структуры. На рисунках альфа-спирали изображаются или как спиральные ленты или как цилиндры, а бета-структуру изображаются как плоские полосы.


Что же заставляет белки сворачиваться? В формировании вторичной структуры принимают участие гидрофобные взаимодействия, ионные взаимодействия, водородные связи и ковалентные связи.

Гидрофобные взаимодействия. Как уже было сказано выше, существуют полярные и неполярные аминокислоты. Если в полипептидной цепи рядом находятся гидрофобные аминокислоты (неполярные), то в водном растворе нерастворимые в воде гидрофобные участки постараются уйти от взаимодействия с водой, свернуться так, чтобы оказаться рядом и укрыться от воды, образовать структуру с минимальной потенциальной энергией. Если рядом находятся заряженные аминокислотные остатки, то они будут притягиваться в случае разноименных зарядов или отталкиваться в случае одноименных зарядов. Поэтому первичная структура белка, то есть, наличие гидрофобных или заряженных участков на полипептидной цепи, определяет то, как этот белок свернется. Или, если, к примеру, имеется пролин, то он будет держать соседние атомы под определенным углом, определяя тем самым их положение в пространстве.

Расположение элементов вторичной структуры (альфа-спиралей и других элементов) в пространстве относительно друг друга называется третичной структурой белка.


Но, кроме того, что сам белок при попадании в водный раствор примет ту конформацию, в которой он должен работать, в клетке еще есть белки, которые называются шапероны (от слова shape - форма), которые помогают другим белкам правильно сворачиваться. Если белки сворачиваются неправильно, то это может иметь катастрофические последствия. Несколько лет назад в Европе была эпидемия коровьего бешенства, и большое количество коров пришлось уничтожить. Коровье бешенство (губчатая энцефалопатия - мозг животного становится похож на губку) вызывается не вирусом и не бактерией, а особым клеточным агентом - неправильно свернутым белком. Этот белок приводит к образованию в клетке конгломератов, то есть, белки буквально выпадают в осадок, и жизнь клетки нарушается, прежде всего влияя на нервную систему. Это происходит потому, что белки, которые в норме в клетке взаимодействовали бы с этим белком, не могут этого сделать, так как он свернут неправильно, и поэтому клетка начинает неправильно функционировать. Таким образом, это болезнь неправильно свернутых белков. Эта эпидемия разразилась после того, как стали применять новую технологию переработки костной муки. При более низких температурах белки из костей больных животных, которые после переработки шли в качестве добавки к корму, перестали уничтожаться, а стали попадать в корм, вызвав тем самым эпидемию. Каким же образом неправильно свернутые белки попадают из пищеварительного тракта в мозг? Оказывается, что клеточные механизмы (ферменты протеазы), которые уничтожают отработанные белки, этот белок «угрызть» не могут. И прионные белки, не меняясь, могут очень долго сохраняться в организме. К тому же, некоторые белки устойчивы к воздействию температур.

У людей есть аналог этой болезни. Это инфекционное заболевание называется куру. Оно описано у народов, имеющих привычку съедать мозги умерших предков (из уважения к последним). В них как раз и находились инфекционные белки. Это так называемая медленная инфекция (белок ведь, в отличие от вируса, не размножается, а постепенно высаживает на себя другие клеточные белки, распространяя вокруг себя плохую «привычку» неправильно сворачиваться). Есть схожая болезнь у овец скрейпи (характер такой же, просто дело в другом белке). И еще есть наследственное заболевание, которое называется синдром Крейтцфельда-Якоба. В одном из белков, который функционирует в мозгах, происходит мутация. В других клетках этот белок также есть, но просто, в первую очередь, нарушения сказываются на нервные ткани, так как они эволюционно самые молодые, и поэтому наиболее чувствительны к любым нарушениям в функционировании клетки. Эта мутация не позволяет белку правильно свернуться, и поэтому у человека развиваются все те же симптомы, что и при коровьем бешенстве у животных.

Сейчас по первичной структуре белка можно предсказать многие элементы его вторичной структуры, то есть как белок свернется. Когда были разработаны алгоритмы такого предсказания, устраивались соревнования, кто лучше предскажет структуру белка. Например структура была известна по данным кристаллографии, но ее никому не показывали, и группы ученых, используя свои алгоритмы, смотрели, чей алгоритм будет лучше.

На рисунке представлена первичная структура белка аполипопротеина Е, он занимается транспортом холестерина, это человеческий белок. На рисунке однобуквенным кодом записана последовательность аминокислот (первичная структура).


Под первичной структурой представлена вторичная структура белка, альфа-спиральные участки обозначены прямоугольниками. Над ними указаны номера аминокислот (белок состоит из 299 аминокислот). Пунктиром обозначен участок, которые во время функционирования белка то расплетается, то опять сворачивается.

Ниже показана третичная структура белка, то есть то, как спирали расположены в пространстве и взаимодействуют друг с другом. У белка есть N - конец, это та часть на которой находится аминогруппа. Та сторона, на которой находится карбоксильная группа, называется соответственно С-конец.

Есть мутация в этом белке, которая меняет заряд одной аминокислоты. В результате меняются ионные взаимодействия внутри молекулы белка. Это меняет сродство белка к липидам разных классов. В результате повышается вероятность развития старческого слабоумия, называемого болезнью Альцгеймера. На этом примере, хорошо видно, как изменение одной единственной аминокислоты может повлиять на функции белка.


На рисунке показано, как свернут белок. Arg-61, положительно заряженный, взаимодействует с отрицательно заряженной глутаминовой кислотой. Тут образуется своеобразный мостик. Слева на рисунке представлен белок, который отличается одной мутацией от белка, изображенного справа. В нем происходит одна аминокислотная замена. Вместо нейтрального, незаряженного цистеина появляется положительно заряженный аргинин (Arg-112), с которым начинает взаимодействовать с отрицательно заряженной глутаминовой кислотой (Glu-109), так как он расположен к глутаминовой кислоте ближе, чем аргинин-61. Исчезает солевой мостик. Меняются взаимодействия внутри белка. Это приводит к тому, что меняет сродство к липидам. Его функция заключается в переносе липидов. И он, вместо липопротеинов более высокой плотности, начинает иметь большее сродство полипротеинами меньшей плотности. У людей с такой мутацией более высокий уровень холестерина и выше уровень риска развития старческого слабоумия. Кстати, помимо физической нагрузки, профилактикой развития старческого слабоумия является умственная работа. Примерно 15% европейцев имеют такую мутацию, у бушменов же это число достигает 40% . Но им этот белок ничуть не мешает, а старческого слабоумия у них не бывает вообще, так как у них низко холестериновая диета и много физических нагрузок. Им этот белок даже полезен, так как холестерин им нужно запасать. У людей же с западной «диетой» большое содержание жиров, и «жадный» вариант белка, дающий высокий уровень холестерина, становиться вредным. Холестерин нужен, но его не должно быть ни слишком много, ни слишком мало. Таким образом, проявление изменений в первичной структуре белка зависит от образа жизни.

Углеводы

Перейдем к углеводам. Углеводы - как название уже говорит само за себя, состоит из углерода и воды. У них так же, как и у аминокислот, есть стереоизомеры, (L и D - молекулы), принцип определения такой же, как и в аминокислотах. Стоит заметить, что если в организме человека все аминокислоты - L-изомеры, то сахара- D-изомеры.


В зависимости от количества атомов углерода в основной цепи сахара делятся на тетрозы (4 атома углерода), пентозы (5 атомов), гексозы (6 атомов). В зависимости от того, в какую сторону повернуты водородные и гидроксильные группы, мы получаем набор изомеров, каждый из которых имеет собственное название.


Сахара имеют такую особенность, что они могут переходить из линейной формы в циклическую. Они называются пиранозы, если в основном кольце 5 атомов углерода, и фуранозы - если четыре атома углерода.


На рисунке изображена глюкоза. Это основной моносахарид. Все остальные клетка стремится перевести в глюкозу, а потом уже глюкозу использовать. Это гораздо более экономичный путь получения энергии, когда все переводится в один универсальный сахар, а потом на этом источнике энергии работают многие биохимические реакции. Рибозы, которые также изображены на рисунке, входит в состав нуклеиновых кислот.

Молекулы моносахаров способны соединяться друг с другом, образуя цепочки. Дисахариды состоят из двух звеньев. На рисунке представлены сахароза и мальтоза.

Здесь еще добавляются стереоизомеры за счет различия в расположении мономеров друг относительно друга и связях между соседними звеньями. В зависимости от этого, различают α- и β-сахариды. Цепочки могут быть очень длинными, состоящими из сотен и тысяч звеньев. На рисунке изображены компоненты крахмала.

Их два - амилоза (линейная молекула) и амилопектин (молекула разветвленной структуры). Крахмал - это запасной углевод растений. К углеводам относиться также целлюлоза (растительный углевод), гликоген (который накапливается в печени животных как запасное вещество), пектин (который является основой для скелета насекомых) и другие.

Углеводы могут присоединяться к белкам, образовывая смешанные структуры. Например, клеточная стенка (не путать с мембраной) у бактерий - это вещество, поверх мембраны защищающая бактерию. Она состоит из смеси углеводов и аминокислот, соединенных в такую регулярную структуру. Пептидогликан (вещество, которое составляет клеточную стенку) выглядит следующим образом:


Нуклеотиды

Остановимся подробнее на нуклеотидах. Известно, что нуклеотиды называются аденин, гуанин, тимин, цитозин и урацил - азотистые основания, они представлены на рисунке ниже.


Нуклеотиды - это мономеры нуклеиновых кислот. Нуклеиновые кислоты в эукариотических клетках находятся в ядре. Они есть у всех живых организмов (у тех, у кого нет ядра, нуклеиновые кислоты все равно есть - они находятся в центре клетки у бактерий и образуют нуклеоиды). Мономеры, из которых потом строятся нуклеиновые кислоты, состоят из азотистого основания, остатка сахара (дезоксирибоза или рибоза) и фосфата. Сахара вместе с азотистым основанием называются нуклеозидами (аденозин, гуанозин, тимидин, цитидин). Если к ним присоединены 1-, 2-, или 3-фосфорных остатка, то вся эта структура называется Соответственно, нуклеотизид монофосфатом, дифосфатом или трифосфатом или нуклеотидом (аденин, гуанин, тимин, цитозин).


Вот так модель АТФ выглядит в пространстве. Азотистое основание, входящее в состав ДНК делится на две группы - пиримидиновую и пуриновую. В состав ДНК входит аденин, тимин, цитозин и гуанин, в РНК вместо тимина урацил. Как известно, ДНК - это большой архив, в котором хранится информация, а РНК - это молекула, которая переносит информацию из ядра в цитоплазму для синтеза белков. С различием в функциях связаны различия в строении. РНК более химически активно из-за того, что ее сахар - рибоза - имеет в своем составе гидроксильную группу, а в дезоксирибозе кислорода нет. Из-за отсутствия кислорода ДНК более инертно, что важно для ее функции хранения информации, чтобы она не вступала ни в какие реакции.


Нуклеотиды способны взаимодействовать друг с другом, при этом «выбрасывается» два фосфора, и между соседними нуклеотидами образуется связь. В молекуле фуранозы молекулы углерода пронумерованы. С первым связано азотистое основание. Когда образуется цепочка нуклеотидов, связь осуществляется между пятым углеродом одной и третьим углеродом другой фосфорной кислоты. Поэтому в цепочке нуклеиновых кислот выделяют разные неравнозначные концы, относительно которых молекула не симметрична.

Комплементарные друг другу одноцепочечные молекулы нуклеиновой кислоты способны образовывать двуцепочечную структуру. Внутри этой спирали аденин образует пару с тимином, а гуанин - с цитозином. Встречается утверждение, что нуклеотиды подходят друг другу как осколки разбитого стекла, поэтому они и образуют пары. Но это утверждение неверно. Нуклеотиды способны образовывать пары как угодно. Единственная причина, по которой они соединяются так, и никак иначе, заключается в том, что угол между «хвостиками», которые идут к сахарам, совпадает только в этих парах, и, кроме того, совпадают их размеры. Никакая другая пара не образует такой конфигурации. А поскольку они совпадают, то их через сахаро-фосфатный остов можно связать друг с другом. Структуру двойной спирали открыли в 1953 году Джеймс Уотсон и Фрэнсис Крик.


При соединение друг с другом против 5’-конца одной нити находится 3’-конец другой нити. То есть нити идут в противоположных направлениях - говорят, что нити в ДНК антипараллельны.

На рисунке видна модель ДНК, видно, что аденин соединяется с тимином двумя водородными связями, а гуанин соединяется с цитозином тройной водородной связью. Если молекулу ДНК подогревать, то ясно, что две связи легче разорвать, чем три, это существенно для свойств ДНК.


В силу пространственного расположения сахаро-фосфатного остова и нуклеотидов, когда нуклеотиды накладывают один на другой и «сшивают» через сахаро-фосфатный остов, цепочка начинает заворачиваться, тем самым образуя знаменитую двойную спираль.

На рисунках представлены шариковые модели ДНК, где каждый атом обозначен шариком. Внутри спирали имеются бороздки: маленькая и большая. Через эти бороздки с ДНК взаимодействуют белки и распознают там последовательность нуклеотидов.


При нагревании ДНК водородные связи разрываются и нити в двойной спирали расплетаются. Процесс нагревания называется плавлением ДНК, при этом разрушаются связи между парами А-Т и Г-Ц.Чем больше в ДНК пар А-Т, тем менее прочно нити друг с другом связаны, тем легче ДНК расплавить. Переход из двухспиральной ДНК в одно-спиральную измеряется на спектрофотометрах по поглощению света при 260 нм. Температура плавления ДНК зависит от А-Т/Г-Ц состава и размера фрагмента молекулы. Ясно, что если фрагмент состоит из нескольких десятков нуклеотидов, то его гораздо легче расплавить, чем более длинные фрагменты.


У человека в гаплоидном геноме, то есть единичном наборе хромосом, 3 млрд. пар нуклеотидов, и их длина составляет 1,7 м, а клетка гораздо меньше, как вы догадываетесь. Для того, чтобы ДНК смогла в ней поместиться, она достаточно плотно свернута, и в эукариотической клетке свернуться ей помогают белки - гистоны. Гистоны имеют положительный заряд, а так как ДНК заряжена отрицательно, то гистоны обладают сродством к ДНК. Упакованная при помощи гистонов ДНК имеет вид бусин, называемых нуклеосомами. 200 пар нуклеотидов идет на одну нуклеосому, 146 пар накручиваются на гистоны, а остальные 54 висят в виде линкерных (связывающих нуклеосомы) ДНК. Это первый уровень компактизации ДНК. В хромосомах ДНК свернута еще несколько раз для того, чтобы образовались компактные структуры.


К нуклеиновым кислотам кроме ДНК относится также РНК. В клетке присутствуют разные типы РНК: рибосомные, матричные, транспортные. Существуют и другие виды РНК, о которых мы будем говорить позже. РНК синтезируется в виде одно-цепочечной молекулы, но отдельные ее участки входят в состав двуцепочечных спиралей. Для РНК также говорят о первичной структуре (последовательности нуклеотидов) и вторичной структуре (образование двуспиральных участков).

Липиды

В состав липидов входят жирные кислоты, имеющие длинные углероводородные цепи. Жирные кислоты гидрофобны, то есть не растворимы в воде.


Липиды представляют собой соединения жирных кислот с глицерином (эфиры). Например, на рисунке изображен лецитин.


В клетке важную роль играют липиды, в которых к глицерину присоединен остаток фосфорной кислоты и 2 жирных кислоты. Они называются фосфолипидами. Молекулы фосфолипидов имеют полярную (то есть гидрофильную, хорошо растворимую) группу на одном конце молекулы и длинный гидрофобный хвост. К фосфолипидам относится фосфатидилхолин.

В водном растворе фосфолипиды образуют мицеллы, в которых молекулы обращены полярными "головами" наружу, в сторону воды, а гидрофобные "хвосты" оказываются внутри мицеллы, спрятанными от воды. Клеточную мембрану также липиды с полярными "головами", которые обращены наружу по обе стороны мембраны, а гидрофобные "хвосты" находятся внутри липидного бислоя.

Более подробно со строением липидов можно познакомиться в (pdf).

Понятие биополимеров как класса полимеров, встречающихся в природе в естественном виде, входящих в состав живых организмов. Структура биополимеров и их функции. Нарушение нативной пространственной структуры при различных воздействиях (денатурация).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Биополиме м ры - класс полимеров, встречающихся в природе в естественном виде, входящие в состав живых организмов: белки, нуклеиновые кислоты, полисахариды, лигнин. Биополимеры состоят из одинаковых (или схожих) звеньев - мономеров. Мономеры белков - аминокислоты, нуклеиновых кислот - нуклеотиды, в полисахаридах - моносахариды. Выделяют два типа биополимеров - регулярные (некоторые полисахариды) и нерегулярные (белки, нуклеиновые кислоты, некоторые полисахариды).

Биополимеры. Структура и функции

Биополимеры высокомолекулярные природные соединения, являющиеся структурной, основой всех живых организмов и играющие определяющую роль в процессах жизнедеятельности. К Б. относятся белки, нуклеиновые кислоты и полисахариды; известны также смешанные Б. - гликопротеиды, липопротеиды, гликолипиды и др.

Биологические функции биополимеров . Нуклеиновые кислоты выполняют в клетке генетические функции. Последовательность мономерных звеньев (нуклеотидов) в дезоксирибонуклеиновой кислоте - ДНК (иногда в рибонуклеиновой кислоте - РНК) определяет последовательность мономерных звеньев (аминокислотных остатков) во всех синтезируемых белках и, Т.о., строение организма и протекающие в нём биохимические процессы. При делении каждой клетки обе дочерние клетки получают полный набор генов благодаря предшествующему самоудвоению (репликации молекул ДНК. Генетическая информация с ДНК переносится на РНК, синтезируемую на ДНК как на матрице). Эта т. н. информационная РНК (и-РНК) служит матрицей при синтезе белка, происходящем на особых органоидах клетки - рибосомах при участии транспортной РНК (т-РНК). Биологическая изменчивость, необходимая для эволюции, осуществляется на молекулярном уровне за счёт изменений в ДНК (см. Мутация).

Белки выполняют в клетке ряд важнейших функций. Белки-ферменты осуществляют все химические реакции обмена веществ в клетке, проводя их в необходимой последовательности и с нужной скоростью. Белки мышц, жгутиков микробов, клеточных ворсинок и др. выполняют сократительную функцию, превращая химическую энергию в механическую работу и обеспечивая подвижность организма в целом или его частей. Белки - основной материал большинства клеточных структур (в т. ч. в специальных видах тканей) всех живых организмов, оболочек вирусов и фагов. Оболочки клеток являются липопротеидными мембранами, Рибосомы построены из белка и РНК и т.д. Структурная функция белков тесно связана с регуляцией поступления различных веществ в субклеточные органеллы (Активный транспорт ионов и др.) и с ферментативным катализом. Белки выполняют и регуляторные функции (Репрессоры), "запрещая" или "разрешая" проявление того или иного гена. В высших организмах имеются белки - переносчики тех или иных веществ (например, гемоглобин - переносчик молекулярного кислорода) и иммунные белки, защищающие организм от чужеродных веществ, проникающих в организм (см. Иммунитет). Полисахариды выполняют структурную, резервную и некоторые другие функции. Белки и нуклеиновые кислоты образуются в живых организмах путём матричного ферментативного Биосинтеза. Имеются теперь и биохимические системы внеклеточного синтеза Б. с помощью ферментов, выделенных из клеток. Разработаны методы химического синтеза белков и нуклеиновых кислот.

Первичная структура биополимеров

Состав и последовательность мономерных звеньев Б. определяют их т. н. первичную структуру. Все нуклеиновые кислоты являются линейными гетерополимерами - сахарофосфатными цепочками, к звеньям которых присоединены боковые группы - азотистые основания: аденин и тимин (в РНК - урацил), гуанин и цитозин; в некоторых случаях (главным образом в т-РНК) боковые группы могут быть представлены другими азотистыми основаниями. Белки - также гетерополимеры; молекулы их образованы одной или несколькими полипептидными цепочками, соединёнными дисульфидными мостиками. В состав полипептидных цепей входит 20 видов различных мономерных звеньев - остатков аминокислот. Молекулярная масса ДНК варьирует от нескольких млн. (у мелких вирусов и бактериофагов) до ста млн. и более (у более крупных фагов); бактериальные клетки содержат по одной молекуле ДНК с молекулярной массой в несколько млрд. ДНК высших организмов может иметь и большую молекулярную массу, но измерить её пока не удалось из-за разрывов в молекулах ДНК, возникающих при их выделении. Рибосомные РНК имеют молекулярную массу от 600 тыс. до 1,1 млн., информационная (и-РНК) - от сотен тысяч до нескольких миллионов, транспортная (т-РНК) - около 25 тыс. Молекулярная масса белков варьирует от 10 тыс. (и менее) до миллионов; в последнем случае, однако, обычно возможно разделение белковой частицы на субъединицы, соединённые между собой слабыми, большей частью гидрофобными, связями. Конформация, т.е. та или иная пространственная форма молекул Б., определяется их первичной структурой. В зависимости от химического строения и внешних условий молекулы Б. могут находиться либо в одной или в нескольких преимущественных конформациях (обычно встречающиеся в природных условиях нативные состояния Б.: например, глобулярное строение белков, двойная спираль ДНК), либо принимать многие более или менее равновероятные конформации. Белки делят по пространственной структуре на фибриллярные (нитевидные) и глобулярные; белки-ферменты, белки-переносчики, иммунные и некоторые другие имеют, как правило, глобулярную структуру. Для ряда белков - гемоглобин, миоглобин, лизоцим, рибонуклеаза и др. - эта структура установлена во всех деталях (с определением при помощи рентгеноструктурного анализа расположения каждого атома). Она определяется последовательностью аминокислотных остатков и образуется и поддерживается относительно слабыми взаимодействиями между мономерными звеньями полипептидных цепей в водно-солевом растворе (кулоновские и дипольные силы, водородные связи, гидрофобные взаимодействия), а также дисульфидными связями. Глобула белка формируется так, что большинство полярных гидрофильных аминокислотных остатков оказывается снаружи и контактирует с растворителем, а большинство неполярных (гидрофобных) остатков находится внутри и изолировано от взаимодействия с водой. Молекулы белка, обладающие избытком неполярных групп, когда часть из них оказывается на поверхности глобулы, образуют высшую, т. н. четвертичную структуру, при которой несколько глобул агрегируют, взаимодействуя между собой в основном неполярными участками (рис .1 ). Пространственная структура каждого белка-фермента уникальна и обеспечивает необходимое для его функционирования расположение в пространстве всех звеньев Б., в особенности т. н. активных центров (См. Активные центры). В то же время она не абсолютно жестка и допускает необходимые в процессе функционирования (при взаимодействии с субстратами, ингибиторами и другими веществами) конформационные сдвиги и изменения.

Пространственная структура нативной ДНК образована двумя комплементарными нитями и представляет собой двойную спираль Крика - Уотсона; в ней противоположные азотистые основания попарно связаны водородными связями - аденин с тимином и гуанин с цитозином. Устойчивость двойной спирали обеспечивается, наряду с водородными связями, также гидрофобным взаимодействием между плоскими кольцами азотистых оснований, расположенных стопкой (стопочное взаимодействие, или стакинг). Нити РНК спирализованы лишь частично. ДНК вирусов, бактериофагов, бактерий, а также митохондриальная в ряде случаев представляет собой замкнутое кольцо; при этом наряду со спиралью Крика - Уотсона наблюдается ещё дополнительная т. н. сверхспирализация.

Денатурация биополимеров

Нарушение нативной пространственной структуры Б. при различных воздействиях (повышение температуры, изменение концентрации металлов, кислотности раствора и др.) называется денатурацией и в ряде случаев обратимо (обратный процесс называется ренатурацией; Молекулы Б. - кооперативные системы: поведение их зависит от взаимодействий составляющих частей. Кооперативность молекул Б. определяется тем, что повороты отдельных звеньев из-за внутримолекулярных взаимодействии зависят от конформации соседних звеньев. В основе денатурации Б. при изменении внешних условий обычно лежат кооперативные конформационные превращения (например, переходы б-спираль - в-структура, б-спираль - клубок, в-структура - клубок для полипептидов, переход глобула - клубок для глобулярных белков, переход спираль - клубок для нуклеиновых кислот). В отличие от фазовых переходов (кипение жидкости, плавление кристалла), являющихся предельным случаем кооперативных процессов и происходящих скачком, кооперативные переходы Б. совершаются в конечном, хотя и сравнительно узком, интервале изменений внешних условий. В этом интервале одномерные, линейные молекулы (нуклеиновые кислоты, полипептиды), претерпевающие переход спираль - клубок, разбиваются на чередующиеся спиральные и клубкообразные участки.

Переход спираль - клубок в ДНК наблюдается при повышении температуры, добавлении в раствор кислоты или щёлочи, а также под влиянием других денатурирующих агентов. Этот переход в гомополинуклеотидах происходит при нагревании в интервале десятых долей°С, в фаговых и бактериальных ДНК - в интервале 3-5°С, в ДНК высших организмов - в интервале 10-15°С. Чем выше гетерогенность ДНК, тем шире интервал перехода и меньше способность молекул ДНК к ренатурации. Переход спираль - клубок в различных видах РНК носит менее кооперативный характер и происходит в более широком интервале температурных или других денатурирующих воздействий.

Белки - полимерные электролиты, их пространственная конформация и кооперативные переходы зависят как от степени ионизации молекулы, так и от концентрации ионов в среде, что влияет на электростатические взаимодействия как между отдельными частями молекулы, так и между Б. и растворителем.

биополимер денатурация пространственная структура

Строение и биологические функции белков

Строение белков - результат длительной эволюции на молекулярном уровне, вследствие чего эти молекулы идеально приспособлены к выполнению своих биологических задач. Между первичной структурой, конформацией Б. и конформационными переходами, с одной стороны, и их биологическими функциями - с другой, существуют тесные связи, исследование которых - одна из главных задач молекулярной биологии. Установление таких связей в ДНК позволило понять основные механизмы репликации транскрипции и трансляции, а также Мутагенеза и некоторых других важнейших биологических процессов. Линейная структура молекулы ДНК обеспечивает запись генетической информации, её удвоение при матричном синтезе ДНК и получение (также путём матричного синтеза) многих копий с одного и того же гена, т.е. молекул и-РНК. Сильные ковалентные связи между нуклеотидами обеспечивают сохранность генетической информации при всех этих процессах. В то же время относительно слабые связи между нитями ДНК и возможность вращения вокруг простых химических связей обеспечивают гибкость и лабильность пространственной структуры, необходимые для разделения нитей при репликации и транскрипции, а также подвижность молекулы и-РНК, служащей матрицей при биосинтезе белка (трансляция). Исследование пространственной структуры и конформационных изменений белков-ферментов на разных стадиях ферментативной реакции при взаимодействии с субстратами и коферментами даёт возможность установить механизмы биокатализа и понять природу огромного ускорения химических реакций, осуществляемого ферментами.

Распад белков

Белки - это основной строительный материал различных биологических структур клеток организма, поэтому обмен белков имеет первостепенную роль в их разрушении и новообразовании. У здорового человека за сутки обновляется 1-2% общего количества белков тела. Период полураспада белков в мышцах и коже - 80 дней, в мозгу - 180 дней, в сыворотке крови и печени - 10 дней, у некоторых белков - гормонов - часы и минуты. Главным путем распада белков в организме является ферментативный гидролиз - протеолиз. Протеолитические ферменты локализованы в лизосомах и в цитозоле клеток. Распад клеточных белков приводит к образованию аминокислот, которые используются в этой же клетке или выделяются из нее в кровь. В желудочно-кишечном тракте локализованы протеолитические ферменты различной специфичности. В желудочном соке находится пепсин, который быстро гидролизует в белках пептидные связи, образованные карбоксильными группами, прежде всего ароматических аминокислот (фенилаланина, тирозина, триптофана).

Протеолиз в кишечнике обеспечивают трипсин, химотрипсин, дипептидазы и другие, которые участвуют в более глубоком гидролизе белков по сравнению с гидролизом в желудке. Кроме того, слизистая кишечника содержит группу аминопептидаз, которые при действии на полипептидные цепи поочередно высвобождают N-концевые аминокислоты. На скорость гидролиза белков пищи указывает то, что через 15 минут после приема человеком белка, содержащего меченые по азоту (15N) аминокислоты, изотоп 15N обнаруживается в крови. Максимальная концентрация аминокислот достигается через 30-50 минут после приема белка с пищей. Всасывание аминокислот происходит в основном в тонком кишечнике, где функционируют специфические системы транспорта аминокислот. Кровотоком аминокислоты транспортируются во все ткани и органы.

Методы исследования биополимеров

При исследовании строения и конформационных превращений Б. широко используются как очищенные природные Б., так и их синтетические модели, которые проще по строению и легче поддаются исследованию. Так, при изучении белков моделями служат гомогенные или гетерогенные полипептиды (с заданным или случайным чередованием аминокислотных остатков). Моделями ДНК и РНК являются соответствующие синтетические гомогенные или гетерогенные полинуклеотиды. К методам исследования Б. и их моделей относятся рентгеноструктурный анализ, электронная микроскопия, изучение спектров поглощения, оптической активности, люминесценции, методы светорассеяния и динамического двойного лучепреломления, седиментационный метод, вискозиметрия, физико-химические методы разделения и очистки и ряд др. Все методы, разработанные для изучения синтетических полимеров, применимы и к Б. При трактовке свойств Б. и их моделей, закономерностей их конформационных превращений используются также методы теоретической физики (статистической физики, термодинамики, квантовой механики и др.).

Основные представители биополимеров

Ксантан (ксантановая камедь / смола) наиболее известный микробный полисахарид. Он культивируется в среде на основе мелассы. Ксантан характеризуют как внеклеточный микробный экзополисахарид, синтезируемый бактериями Xanthomonas campestris, образующийся в виде покрытия на каждой бактерии. Метод получения ксантановой смолы был разработан в 1961 году в США и уже с середины 60-х годов его начали применять в качестве компонента буровых растворов Данный биополимер выпускается под различными фирменными названиями: келцан, Кеm-XD, ХС-биополимер, Barazan D, Flo-Vis в виде порошка. Стоимость биополимера в зависимости от степени очистки товарного продукта может достигатъ нескольких десятков тысяч долларов за тонну. Молекулярная масса ксантана может составлять от 5 до 20 млн. Ксантан валяется кислым гетерополисахаридом. В состав ксантана входят остатки D-глюкозы, D-глюкуроновой кислоты, D-маннозы в соотношении 2,8: 2,0: 2,0 соответственно. Кроме того, он содержит около 4,7% О-ацетильных групп и около 3% остатков пировиноградной кислоты, связанных с остатками глюкозы в боковых цепях в виде циклического кеталя. Наиболее важное качество камеди ксантана - это высокая прочность на разрыв одновременно с большой растяжимостью. Кроме того, камедь легко смешивается и поглощается другими веществами, образуя стабильные суспензии и термообратимые мягкие эластичные гели, например, с камедью рожкового дерева. Растворы камеди ксантана высоко псевдопластичны. При увеличении сдвигового усилия резко понижается вязкость. После снятия усилия начальная вязкость восстанавливается почти мгновенно. Ксантановая камедь используется для приготовления буровых растворов в качестве структурообразователя. Биополимер эффективно работает во всех буровых растворах на водной основе - от сильно утяжеленных до систем с низким содержанием твердой фазы, включая пресную, морскую воду, системы на основе соленой воды и плотные рассолы; обеспечивает реологический профиль повышенной вязкости при низких скоростях сдвига и понижает сдвиговые характеристики при высоких скоростях сдвига. Эти характеристики часто приводят к образованию жидкостей, где предельное напряжение сдвига выше, чем пластическая вязкость. Водные растворы его имеют способность макроструктурироватъся в результате образования надмолекулярных пространственных сеток, состоящих из спиральных структурных единиц, соединяющихся водородными и ван-дер-ваальсовыми связями. Макромолекулы ксантана, помимо полярных функциональных групп, содержат также анионные карбоксилатные группы, располагающиеся на боковых ответвлениях внутри основной спирали. Видимо, подобным экранированием заряженных участков макромолекулы ксантана объясняется обратимость и прочность к сдвиговым нагрузкам гидратированных макромолекулярных структур, которые обеспечивают псевдопластичный характер реологического поведения биополимерных растворов. Снижение сдвиговых усилий позволяет свести к минимуму потери давления и давление в стояке внутри бурильной колонны и на долоте, для оптимизации гидравлических показателей и максимальной скорости проходки. Кроме того, межтрубное пространство, в котором наблюдаются низкие сдвиговые усилия, имеет высокоэффективную вязкость для очистки скважины и суспензии шлама.

Склероглюкан - нейтральный гомополисахарид, в котором остатки глюкопиранозы связаны в - (1,3) - связями. Склерглюкан синтезируется в среде на основе глюкозы. Склероглюкан впервые описан в 60-х годах прошлого столетия. В водном растворе молекула склероглюкана представляет собой тройную спираль и вследствие этого образует малоэластичные стержни с большим гидродинамическим радиусом. Склерглюкан легко растворяется в воде, образуя псевдопластичные растворы, имеющие большую толерантность в широком диапазоне температуры, рН и концентрации солей. Трехвалентные катионы (Сг3+, Al3+, Fe3+) могут вызывать гелеобразование, отмечена нечувствительность склерглюкана к действию одно - и двух - валентных катионов, а также то, что склероглюкан термостабильнее, чем ксантан .

Эмульсан - первый ЭПС, получаемый в промышленном масштабе на основе этанола в качестве источника углерода. Он называется также б-эмульсан, или "неоэмульсан", и представляет собой внеклеточный микробный липополисахарид, ассоциированный с белком. Слово "эмульсан" отражает полисахаридную структуру компонентов и исключительную эмульгирующую активность полимера. б-эмульсан состоит в основном из N - и О-ацилированных остатков D-галактозамина и аминоуроновой кислоты. О-Ацильная часть б-эмульсана содержит от 5 до 19% (чаще 7-14%) остатков жирных кислот, включающих 10-18 атомов углерода, причем более 50% жирных кислот составляют 2 - и 3-гидроксидодекановые кислоты. в-Эмульсан, или "протоэмульсан", получают культивированием A. caleoaceticus RAG-1 на сырой нефти или гексадекане. в-эмульсан отличается меньшим содержанием остатков жирных кислот. Их число не превышает 2-3%, а содержание 2 - и 3-гидроксидодекановых кислот составляет менее 50%. б-Эмульсан выделяют из культуральной жидкости осаждением с помощью сульфата аммония или переводом в водонерастворимую четвертичную аммониевую соль. Благодаря большому количеству остатков жирных кислот в молекуле эмульсан может быть выделен экстракцией органическими растворителями. Молекулярная масса эмульсана, вычисленная на основании характеристической вязкости составляет 9,88*105; определенная методом седиментации и диффузии - 976 тысяч . Эмульсан - наиболее эффективный стабилизатор, причем это свойство сохраняется для различных концентраций эмульгаторов. Эмульгирующая способность зависит от содержания остатков жирных кислот, а также от молекулярной массы полимера. Эмульсан эмульгирует легкие фракции нефти, дизельное топливо, сырую нефть и газойли. Скорость образования эмульсии зависит от концентрации углеводорода и эмульгатора. При рН выше 6,0 для образования стабильных эмульсий необходимы небольшие количества (1-100 ммоль) солей Ca 2+, Mg 2+ и Mn 2+Исследование влияния эмульсана на образование и стабилизацию водно-топливных эмульсий показало, что при добавлении эмульсана стабильность всех эмульсий возрастает, однако эффект стабилизации различен для разных углеводородов. Чем выше молекулярная масса жидкого углеводорода, тем эффективнее стабилизирующее действие эмульсана. С помощью эмульсана можно удалить остатки нефти из танкеров, барж, трубопроводов, цистерн . Применение эмульсана для очистки поверхности воды морей и берегов от нефти способствует защите окружающей среды.

Строение биополимеров

Для того, чтобы выяснить, как устроены молекулы, образующие клетки, какова структура молекул, где они находятся в клетке, мы сначала вспомним строение клетки. Вспомнив, из чего состоит живая клетка, и какие функции выполняют те или иные органеллы, мы сможем заполнить следующую табличку. Оказывается, можно провести интересную аналогию с элементами, выполняющими схожие функции у живых организмов и государств. Выделим следующие функции:

защиты (внешнюю и внутреннюю);

транспортную (веществ и информации);

обеспечение клетки энергией и веществами;

хранение и передача информации.

За внешнюю защиту у клеток отвечает клеточная мембрана; у организмов - кожа, когти, перья, шерсть; у государств - погранвойска. Внутреннюю защиту клеткам обеспечивает система рестрикции - модификации. Для примера приведем бактериальную клетку. У нее есть специальные ферменты - рестриктазы (в пер. с англ. "ограничивать"), которые разрезают чужеродную ДНК. На собственных ДНК есть специальные химические метки, чтобы рестриктазы смогли их распознать. У организмов в качестве внутренней защиты существует иммунная система, а у государства - МВД, ФСК. Обеспечением энергией в животных клетках занимаются митохондрии, а в растительных - хлоропласты, в организмах - пищеварительная и дыхательная системы, в государстве же - организации типа Газпрома и АЭС. Обеспечение клетки веществами идет благодаря трансмембранным каналам, лизосомам, в организме - пищеварительной системе, а в государстве - сельскохозяйственной и др. промышленности.

Хранение и воспроизведение информации на клеточном уровне идет в ядре посредством ДНК, в организме эту функцию имеет мозг, центральная нервная система, в стране - школы, библиотеки, культура, искусство. Транспортируются вещества в клетке благодаря эндоплазматической сети, в организме - желудочно-кишечному тракту, дыхательной системе, крови; в стране-, нефте- и газопроводам, транспорту. Что же касается передачи информации, то в клетке этим занимается матричная РНК; в организме - нервы и гормоны (нервно-гуморальная система). Причем хочется отметить, что нервную систему можно сравнить с адресной доставкой (человек может получить письмо лично, и никто больше об этом не узнает), то есть по нервам можно доставить информацию очень точно к определенной мышце или определенному органу. А гормональную систему можно сравнить со СМИ, то есть она работает как система всеобщего оповещения. В государстве за информацию отвечают почта, телефонная сеть, Интернет и др. Мы провели аналогию с хорошо известными вам системами (организм и государство), чтобы иметь более абстрактное представление о строении клетки. В таблице добавлены индийские касты. Касты возникли, как структуры, фиксирующие функциональные особенности разных слоев населения. Кшатрии (воины) выполняют функции защиты; шудры (торговцы и ремесленники) - обеспечения питанием и энергией; брахманы (жрецы) - хранения и воспроизведения информации, вайшьи (торговцы) - транспорт вещества и информации. Далее мы переходим к изучению веществ, из которых состоит клетка, и будем говорить о связи структур и функций этих веществ. Основные атомы, составляющие живую клетку - это углерод, водород, кислород, азот и фосфор. Конечно, в полимерах присутствуют и другие вещества (например, сера), но сейчас мы рассмотрим комбинации этих пяти элементов. Как вы знаете, образование биополимеров возможно благодаря тому, что углерод четырехвалентен, способен образовывать 4 связи, и атомы углерода, связываясь друг с другом, могут образовывать длинные цепочки, состоящие из десятков атомов. Мы расскажем о четырех видах биополимеров: белках, нуклеиновых кислотах, липидах и углеводах; как они устроены и чем занимаются.

Размещено на Allbest.ru

...

Подобные документы

    Обмен веществ как главное отличие живых объектов и процессов от неживых. Два основных типа биополимеров в составе живых систем: белки и нуклеиновые кислоты (ДНК и РНК). Необходимые для жизни физические и химические условия. Свойства живых систем.

    контрольная работа , добавлен 22.05.2009

    Понятие белков как высокомолекулярных природных соединений (биополимеров), состоящих из остатков аминокислот, которые соединены пептидной связью. Функции и значение белков в организме человека, их превращение и структура: первичная, вторичная, третичная.

    презентация , добавлен 07.04.2014

    История изучения нуклеиновых кислот как биополимеров, мономерами которых являются нуклеотиды, функции и значение в жизнедеятельности организма. Правила Чаргаффа. Первичная и вторичная структура ДНК. Особенности репликации у эукариот, ее разновидности.

    презентация , добавлен 05.11.2014

    Понятие эволюции - процесса оптимизации всех живых организмов. Генетический алгоритм как простая модель эволюции в природе, реализованная в виде компьютерной программы. Характерная структура хромосомы. Функция Fitness, Likelihood, Breeding, Solve, Main.

    курсовая работа , добавлен 28.04.2011

    Биосфера как область обитания живых организмов. Оболочка Земли: состав, структура и энергетика которой определяется совокупной деятельностью живых организмов. Абиотические компоненты биосферы. Связь биосферы с космосом и взаимодействие с человеком.

    реферат , добавлен 13.05.2009

    Основа организации и устойчивости биосферы, распределение и классификация живого вещества. Миграция живых организмов, постоянство их биомассы. Фотосинтез - основное звено биохимического круговорота в природе. Функции живого вещества в биосфере Земли.

    реферат , добавлен 25.11.2010

    Исследование строения и физико-химических свойств химических соединений, входящих в состав живых организмов, метаболизма и молекулярных механизмов его регуляции. Квалификационные требования к выпускнику-биохимику. Область профессиональной деятельности.

    учебное пособие , добавлен 19.07.2009

    Понятие биосферы, ее сущность и особенности, состав и элементы. Истрии я возникновения и формирования сообществ живых организмов, путь их становления и эволюции. Понятие биогеоценоза, его структура, отличия от биоценоза. Факторы среды и их интенсивность.

    реферат , добавлен 09.02.2009

    Структура и поведение ДНК, ее компоненты и соединяющие их химические связи. Альтернативные формы двойной спирали ДНК. Размер молекул и разнообразие форм. Денатурация и ренатурация ДНК. Гибридные спирали ДНК-РНК. Конформация белка, уровни его структуры.

    реферат , добавлен 26.07.2009

    Клеточные и неклеточные формы живых организмов, их основные отличия. Животные и растительные ткани. Биоценоз - живые организмы, имеющие общее место обитания. Биосфера Земли и ее оболочки. Таксон - группа организмов, объединенных определенными признаками.



План:

    Введение
  • 1 Белки
  • 2 Нуклеиновые кислоты
  • 3 Полисахариды

Введение

Биополиме́ры - класс полимеров, встречающихся в природе в естественном виде, входящие в состав живых организмов: белки, нуклеиновые кислоты, полисахариды. Биополимеры состоят из одинаковых (или разных) звеньев - мономеров. Мономеры белков - аминокислоты, нуклеиновых кислот - нуклеотиды, в полисахаридах - моносахариды.

Выделяют два типа биополимеров - регулярные (некоторые полисахариды) и нерегулярные (белки, нуклеиновые кислоты, некоторые полисахариды).


1. Белки

Белки имеют несколько уровней организации - первичная, вторичная, третичная, и иногда четвертичная. Первичная структура определяется последовательностью мономеров, вторичная задаётся внутри- и межмолекулярными взаимодействиями между мономерами, обычно при помощи водородных связей. Третичная структура зависит от взаимодействия вторичных структур, четвертичная, как правило, образуется при объединении нескольких молекул с третичной структурой.

Вторичная структура белков образуется при взаимодействии аминокислот с помощью водородных связей и гидрофобных взаимодействий. Основными типами вторичной структуры являются

  • α-спираль, когда водородные связи возникают между аминокислотами в одной цепи,
  • β-листы (складчатые слои), когда водородные связи образуются между разными полипептидными цепями, идущими в разных направлениях (антипараллельно,
  • неупорядоченные участки

Для предсказания вторичной структуры используются компьютерные программы.

Третичная структура или «фолд» образуется при взаимодействии вторичных структур и стабилируется нековалентными, ионными, водородными связями и гидрофобными взаимодействиями. Белки, выполняющие сходные функции обычно имеют сходную третичную структуру. Примером фолда является β-баррел (бочка), когда β-листы располагаются по окружности. Третичная структура белков определяется с помощью рентгеноструктурного анализа.

Важный класс полимерных белков составляют Фибриллярные белки, самый известный из которых коллаген.

В животном мире в качестве опорного, структурообразующего полимера обычно выступают белки. Эти полимеры построены из 20 α-аминокислот. Остатки аминокислот связаны в макромолекулы белка пептидными связями, возникающими в результате реакции карбоксильных и аминогрупп.

Значение белков в живой природе трудно переоценить. Это строительный материал живых организмов, биокатализаторы – ферменты, обеспечивающие протекание реакций в клетках, и энзимы, стимулирующие определённые биохимические реакции, т.е. обеспечивающие избирательность биокатализа. Наши мышцы, волосы, кожа состоят из волокнистых белков. Белок крови, входящий в состав гемоглобина, способствует усвоению кислорода воздуха, другой белок – инсулин – ответственен за расщепление сахара в организме и, следовательно, за его обеспечение энергией. Молекулярная масса белков колеблется в широких пределах. Так, инсулин – первый из белков, строение которого удалось установить Ф. Сэнгеру в 1953 г., содержит около 60 аминокислотных звеньев, а его молекулярная масса составляет лишь 12 000. К настоящему времени идентифицировано несколько тысяч молекул белков, молекулярная масса некоторых из них достигает 10 6 и более.


2. Нуклеиновые кислоты

  • Первичная структура ДНК - это линейная последовательность нуклеотидов в цепи. Как правило последовательность записывают в виде букв (например AGTCATGCCAG), причём запись ведётся с 5"- на 3"-конец цепи.
  • Вторичная структура - это структура, образованная за счёт нековалентных взаимодействий нуклеотидов (в большей степени азотистых оснований) между собой, стэкинга и водородных связей. Двойная спираль ДНК является классическим примером вторичной структуры. Это самая распространённая в природе форма ДНК, которая состоит из двух антипаралельных комплементарных полинуклеотидных цепей. Антипараллельность реализуется за счёт полярности каждой из цепей. Под комплементарностью понимают соответствие каждому азотистому основанию одной цепи ДНК строго определённого основания другой цепи (напротив A стоит T, а напротив G располагается C). ДНК удерживается в двойной спирали за счёт комплементарного спаривания оснований - образования водородных связей, двух в паре А-Т и трёх в паре G-C.

В 1868 г. швейцарский учёный Фридрих Мишер выделил из ядер клеток фосфорсодержащее вещество, которое он назвал нуклеином. Позднее это и подобные ему вещества получили название нуклеиновых кислот. Их молекулярная масса может достигать 10 9 , но чаще колеблется в пределах 10 5 -10 6 . Исходными веществами, из которых построены нуклеотиды – звенья макромолекул нуклеиновых кислот, являются: углевод, фосфорная кислота, пуриновые и пиримидиновые основания. В одной группе кислот в качестве углевода выступает рибоза, в другой – дезоксирибоза

В соответствии с природой углевода, входящего в их состав, нуклеиновые кислоты называются рибонуклеиновой и дезоксирибонуклеиновой кислотами. Общеупотребительными сокращениями являются РНК и ДНК. Нуклеиновые кислоты играют наиболее ответственную роль в процессах жизнедеятельности. С их помощью решаются две важнейшие задачи: хранения и передачи наследственной информации и матричный синтез макромолекул ДНК, РНК и белка.


3. Полисахариды

3-х мерная структура целлюлозы

Полисахариды, синтезируемые живыми организмами, состоят из большого количества моносахаридов, соединённых гликозидными связями. Зачастую полисахариды нерастворимы в воде. Обычно это очень большие, разветвлённые молекулы. Примерами полисахаридов, которые синтезируют живые организмы, являются запасные вещества крахмал и гликоген, а также структурные полисахариды - целлюлоза и хитин. Так как биологические полисахариды состоят из молекул разной длины, понятия вторичной и третичной структуры к полисахаридам не применяются.

Полисахариды образуются из низкомолекулярных соединений, называемых сахарами или углеводами. Циклические молекулы моносахаридов могут связываться между собой с образованием так называемых гликозидных связей путём конденсации гидроксильных групп.

Наиболее распространены полисахариды, повторяющиеся звенья которых являются остатками α-D-глюкопиранозы или её производных. Наиболее известна и широко применяема целлюлоза. В этом полисахариде кислородный мостик связывает 1-й и 4-й атомы углерода в соседних звеньях, такая связь называется α-1,4-гликозидной.

Химический состав, аналогичный целлюлозе, имеют крахмал, состоящий из амилозы и амилопектина, гликоген и декстран. Отличие первых от целлюлозы состоит в разветвлённости макромолекул, причём амилопектин и гликоген могут быть отнесены к сверхразветвлённым природным полимерам, т.е. дендримерам нерегулярного строения. Точкой ветвления обычно является шестой атом углерода α-D-глюкопиранозного кольца, который связан гликозидной связью с боковой цепью. Отличие декстрана от целлюлозы состоит в природе гликозидных связей – наряду с α-1,4-, декстран содержит также α-1,3- и α-1,6-гликозидные связи, причем последние являются доминирующими.

Химический состав, отличный от целлюлозы, имеют хитин и хитозан, но они близки к ней по структуре. Отличие заключается в том, что при втором атоме углерода α-D-глюкопиранозных звеньев, связанных α-1,4-гликозидными связями, OH-группа заменена группами –NHCH 3 COO в хитине и группой –NH 2 в хитозане.

Целлюлоза содержится в коре и древесине деревьев, стеблях растений: хлопок содержит более 90 % целлюлозы, деревья хвойных пород – свыше 60 %, лиственных – около 40 %. Прочность волокон целлюлозы обусловлена тем, что они образованы монокристаллами, в которых макромолекулы упакованы параллельно одна другой. Целлюлоза составляет структурную основу представителей не только растительного мира, но и некоторых бактерий.

В животном мире в качестве опорных, структурообразующих полимеров полисахариды «используются» лишь насекомыми и членистоногими. Наиболее часто для этих целей применяется хитин, который служит для построения так называемого внешнего скелета у крабов, раков, креветок. Из хитина деацетилированием получается хитозан, который, в отличие от нерастворимого хитина, растворим в водных растворах муравьиной, уксусной и соляной кислот. В связи с этим, а также благодаря комплексу ценных свойств, сочетающихся с биосовместимостью, хитозан имеет большие перспективы широкого практического применения в ближайшем будущем.

Крахмал относится к числу полисахаридов, выполняющих роль резервного пищевого вещества в растениях. Клубни, плоды, семена содержат до 70 % крахмала. Запасаемым полисахаридом животных является гликоген, который содержится преимущественно в печени и мышцах.

Прочность стволов и стеблей растений, помимо скелета из целлюлозных волокон, определяется соединительной растительной тканью. Значительную её часть в деревьях составляет лигнин – до 30 %. Его строение точно не установлено. Известно, что это относительно низкомолекулярный (M ≈ 104) сверхразветвлённый полимер, образованный в основном из остатков фенолов, замещённых в орто -положении группами –OCH 3 , в пара -положении группами –CH=CH–CH 2 OH. В настоящее время накоплено громадное количество лигнинов как отходов целлюлозно-гидролизной промышленности, но проблема их утилизации не решена. К опорным элементам растительной ткани относятся пектиновые вещества и, в частности пектин, находящийся в основном в стенках клеток. Его содержание в кожуре яблок и белой части кожуры цитрусовых доходит до 30 %. Пектин относится к гетерополисахаридам, т.е. сополимерам. Его макромолекулы в основном построены из остатков D-галактуроновой кислоты и её метилового эфира, связанных α-1,4-гликозидными связями.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!