Упражнения. Питание. Диеты. Тренировки. Спорт

Мышечная сила достигает наибольшего значения. Тренировки для роста мышц. Быстрые и медленные мышечные волокна

Которое выражается в способности человека преодолевать сопротивление, т. е. противодействовать ему путём мышечно-го напряжения. Раз-витию мышечной силы должно быть отведено значительное место в профессиональной и двигательной подготовке людей.

Многие виды работ как на производстве, так и в быту предъ-являют повышенные требования к мышечной силе. Это поиск и добыча полезных ископаемых, подземные, строительные, бурильные, лесозаготовительные, сельскохозяйственные и другие работы.

Любое движение (на производстве, в быту и спорте) основа-но на мышечной силе как на одном из видов физических спо-собностей, определяющих работоспособность. В наибольшей степени сила связана с выносливостью и быстротой.

Проявление силы мышц зависит: от состояния ЦНС; соот-ветствующей деятельности коры большого мозга; физиологического поперечника мышц; биохимических процессов, про-исходящих в мышцах.

Динамическая и статическая сила

Мышечная сила проявляется в двух основных режимах: изотоническом и изометрическом. В изотоническом режи-ме мышцы, сокращаясь (при укорочении или удлинении), производят движение (динамическая сила ). В изометриче-ском режиме мышцы напрягаются, но движения не произ-водят (статическая сила ).

Динамические, статические и смешанные усилия выполня-ются с различной степенью нервно-мышечного напряжения.

Виды силовых способностей

Выделяют собственно силовые (проявляемые в стати-ческом режиме), скоростно-силовые (проявляемые в дина-мическом режиме) усилия, а также взрывную силу (способ-ность проявлять большую величину силы в наименьший от-резок времени). Скоростно-силовые усилия подразделяются на преодолевающие и уступающие . Например, при сгиба-нии и разгибании рук в упоре лёжа сгибание — уступающее усилие, а разгибание — преодолевающее.

Абсолютная и относительная сила

Сила людей при одинаковой тренировке зависит от массы тела. Существуют понятия абсолютной и относительной мы-шечной силы. Степень развития силы измеряется с помощью динамометров различных конструкций. Материал с сайта

  • Абсолютная сила — это максимальная сила, которую может проявить человек без учёта собственной массы тела.
  • Относительная сила — это сила, приходящаяся на еди-ницу собственной массы.
Сила мышц. Максимальная сила мышц - это величина максимального напряжения, которое может развить мышца. В развитии мышечной силы имеют значение: 1) внутримышечные факторы

Внутримышечные факторы развития силы включают в себя биохимические, морфологические и функциональные особенности мышечных волокон.

Физиологический поперечник, зависящий от числа мышечных волокон (он наибольший для мышц с перистым строением); Мышечная сила человека при прочих равных условиях пропорциональна площади физиологического поперечника мышцы. Это еще отметил немецкий физиолог Е.Вебер (1846). Известно, что 1 см. мышцы поднимает от 6 – 10 кг безотносительно к тому, тренирован или не тренирован ее обладатель.

Состав (композиция) мышечных волокон, соотношение слабых и более возбудимых медленных мышечных волокон (окислительных, мало утомляемых) и более мощных высоко пороговых быстрых мышечных волокон (гликолитических, утомляемых);

Миофибриллярная гипертрофия мышцы - т.е. увеличение мышечной массы, которая развивается при силовой тренировке в результате адаптационно-трофических влияний и характеризуется ростом толщины и более плотной упаковкой сократительных элементов мышечного волокна - миофибрилл.

2) особенности нервной регуляции

Нервная регуляция обеспечивает развитие силы за счет совершенствования деятельности отдельных мышечных волокон, двигательных единиц (ДЕ) целой мышцы и межмышечной координации. Она включает в себя следующие факторы:

Увеличение частоты нервных импульсов, поступающих в скелетные мышцы от мотонейронов спинного мозга и обеспечивающих переход от слабых одиночных сокращений их волокон к мощным тетаническим;

Активация многих ДЕ - при увеличении числа вовлеченных в двигательный акт ДЕ повышается сила сокращения мышцы;

Синхронизация активности ДЕ - одновременное сокращение возможно большего числа активных ДЕ резко увеличивает силу тяги мышцы;

Межмышечная координация - сила мышцы зависит от деятельности других мышечных групп: сила мышцы растет при одновременном расслаблении ее антагониста, она уменьшается при одновременном сокращении других мышц и увеличивается при фиксации туловища или отдельных суставов мышцами- антагонистами. Например, при подъеме штанги возникает явление натуживания (выдох при закрытой голосовой щели), приводящее к фиксации мышцами туловища спортсмена и создающее прочную основу для преодоления поднимаемого веса.

3) психофизиологические механизмы

Психофизиологические механизмы увеличения мышечной силы связаны с изменениями функционального состояния (бодрости, сонливости, утомления), влияниями мотиваций и эмоций, усиливающих симпатические и гормональные воздействия со стороны гипофиза, надпочечников и половых желез, биоритмов.

Измерение мышечной силы . Основным методом определения силы мышц является динамометрия. Для измерения силы кисти широко применяют ручные плоскопружинные динамометры (рис. 21). Существуют разные их модификации: ДРП-10 предназначен для детей младшего школьного возраста и ослабленных больных с заболеваниями опорно-двигательного аппарата. ДРП-30 - для детей среднего школьного возраста и для ослабленных больных, ДРП-90 для здоровых взрослых, ДРП-120 - для спортсменов.

Рис. 21. Динамометры для измерения силы рук

Для измерения силы мышц кисти испытуемый максимально сжимает динамометр правой, затем левой рукой. Рука должна быть вытянута в сторону, и поднята до уровня плеч. Измерение проводят 2-3 раза и записывают наибольшую цифру. Точность измерения ±2 килограмма. Нормативные показатели силы кисти ведущей руки для мужчин и женщин в зависимости от возраста представлены в приложении 1, таблице 1.

После проведения динамометрии рассчитывают силовой индекс по формуле:

Силовой индекс = Мышечная сила ведущей кисти (кг) / Вес тела (кг) ´100 %

Норма: для женщин 45-50 %, для мужчин – 65-80 %

Для определения силы мышц разгибателей спины используют становой динамометр, который снабжен опорной площадкой для ног. При измерении становой силы испытуемый встает на опорную площадку, нагибается, берется руками за ручку динамометра и с максимальным усилием медленно выпрямляется. Исследование повторяют 2-3 раза, отмечают лучший результат. Точность измерения равна ± 5 килограмм.

Нормативные показатели становой силы у мужчин и женщин представлены в приложении 1, таблице 2.

Для сравнения силы различных мышц определяют их удельную или абсолютную силу. Она равна максимальной, делённой на кв. см. площади поперечного сечения мышцы. Удельная сила икроножной мышцы человека составляет -2 кг/см 2 , трехглавой - 16,8 кг/см 2 , жевательных - 10 кг/см 2 .

Работа мышц. Работу мышц делят на динамическую и статическую. Динамическая выполняется при перемещении груза. При динамической работе изменяется длина мышцы и ее напряжение. Следовательно мышца работает в ауксотническом режиме. При статической работе перемещения груза не происходит, т.е. мышца работает в изометрическом режиме. Согласно законам физики, работа есть энергия, затрачиваемая на перемещение тела с определенной силой на определенное рас­стояние:

А = F´S.

Если сокращение мышцы совершается без нагрузки (в изотоническом режиме), то механическая работа равна нулю. Если при максимальной нагрузке не происходит укорочения мышцы (изометрический режим), то работа также равна нулю. В этом случае химическая энергия полностью переходит в тепловую.

Зависимость величины работы от нагрузки подчиняется закону средних нагрузок. При увеличении нагрузки работа мышц первоначально растет. При средних нагрузках она становится максимальной. Если увеличение нагрузки продолжается, то работа снижается. Такое же влияние на величину работы оказывает ее ритм. Максимальная работа мышцы осуществляется при среднем ритме.

Мощность мышцы Особое значение в расчете величины рабочей нагрузки имеет определение мощности мышцы. Это механическая (сила ´длину укорочения) работа, выполняемая в единицу времени

N (Р) = А / Т

Мощность мышечного сокращения отличается от силы мышцы, поскольку мощность является мерой общего количества работы, выполняемой в единицу времени. Следовательно, мощность определяется не только силой мышечного сокращения, но также расстоянием сокращения и числом сокращений в минуту. Мышечная мощность обычно измеряется в килограммометрах (кгм) в минуту. Максимальная мощность, развиваемая всеми мышцами очень тренированного спортсмена при условии их совместной работы примерно следующая: первые 8-10 сек.- 7000 кгм/мин; следующая 1 мин – 4000 кгм/мин; следующие 30 мин – 1700 кгм/мин. Таким образом, максимальную мощность человек может развивать только в течение коротких промежутков времени, тогда как для долговременных нагрузок, требующих выносливости, мощность мышц составляет лишь ј от первоначальной величины.

Мышечная выносливость. В условиях статической работы мышечная выносливость определяется временем, в течение которого поддерживается статическое напряжение или удерживается некоторый груз. Предельное время статической работы (статическая выносливость) обратно пропорционально нагрузке. Выносливость в процессе выполнения динамической работы измеряется отношением величины работы ко времени ее выполнения. При этом выделяют пиковую и критическую мощность динамической работы: пиковой является максимальная мощность, достигаемая в какой-то момент динамической работы; критической называют мощность, поддерживаемую на одинаковом уровне достаточно длительное время. Выделяют также динамическую выносливость, которая определяется временем осуществления работы с заданной мощностью.

В зависимости от типа и характера выполняемой физической (мышечной) работы различают:

1. статическую и динамическую выносливость, т. е. способность длительно выполнять соответственно статическую или динамическую работу;

2. локальную и глобальную выносливость, т. е. способность длительно осуществлять соответственно локальную работу (с участием небольшого числа мышц) или глобальную работу (при участии больших мышечных групп - более половины мышечной массы);

3. силовую выносливость, т. е. способность многократно повторять упражнения, требующие проявления большой мышечной силы;

4. анаэробную и аэробную выносливость, т. е. способность длительно выполнять глобальную работу с преимущественно анаэробным или аэробным типом энергообеспечения.

Контрольные вопросы

1. Что такое максимальная сила мышц?

2. От каких показателей зависит сила мышц?

3. Какие виды работы выполняют мышцы?

4. Какие методы используют для измерения мышечной силы?

5. Какая существует зависимость величины работы от нагрузки?

6. Что такое мощность мышцы, как ее определяют?

7. Что такое выносливость, как определяют этот показатель?

Утомление мышц

В результате продолжительной деятельности рабо­тоспособность скелетной мускулатуры понижается. Это явление назы­вается утомлением. При этом снижается сила сокращений, увеличиваются латентный период сокращения и период расслабления. Статический режим работы более утомителен, чем динамический.

В прошлом веке, на основании опытов с изолированными мышцами, было предложено 3 теории мышечного утомления:

1) Теория истощения Шиффа (1868): утомление является следствием истощения энергетических запасов в мышце.

2) Теория отравления Пфлюгера (1872): утомление обусловлено накоплением в мышце продуктов обмена, в частности молочной кислоты.

3) Теория удушения Ферворна (1901): утомление объясняется недостатком кислорода в мышце.

Все эти теории объединяют в группугуморально-локалистических теорий .

Действительно эти факторы способствуют утомлению в экспериментах на изолированных мышцах. В процессе совершения работы в мышечных волокнах накапливаются продукты процессов окисления - молочная и пировиноградная кислоты, которые снижают возможность генерирования ПД. Кроме того, нарушаются процессы ресинтеза АТФ и креатинфосфата, необходимых для энергообеспечения мышечного сокращения.

Однако в организме интенсивно работающие мышцы, получают необходимый кислород, питательные вещества, освобождаются от метаболитов за счет усиления общего и регионального кровообращения. Поэтому были предложены другие теории утомления, которые объединены в группу центрально-нервных теорий . Выделяют четыре основных направления в рамках центрально-нервных теорий:

1) утомление как результат торможения в центральной нервной системе (Васильев Л.Л., Виноградов М.И., 1966). В качестве основных факторов, обуславливающих торможение выступает затухание рабочей доминанты, чрезмерный афферентный поток от работающих мышц и влияние на нервные центры биохимических сдвигов в крови, возникающих при активной мышечной работе.

2) утомление – результат дисбаланса во взаимодействии коры больших полушарий и центров вегетативной нервной системы (Левицкий В.А., 1926). Центры вегетативного обеспечения деятельности выступают в качестве защитных по отношению к коре, посылая к ней тормозные сигналы.

3) утомление как нарушение координации процессов, обеспечивающих деятельное состояние в первую очередь в центральной нервной системе. Это направление основано на теории доминанты Ухтомского А.А. (1934). Эта теория имеет большее число сторонников.

4) утомление возникает в связи с ослаблением адаптационно-трофического влияния симпатической нервной системы на соматическую (Кекчеев К.Х, 1927)

Рис. 22. Факторы, влияющие на развитие утомления при экстремальных нагрузках (по А. Коробкову, 1975)

В прошлом веке И.М.Сеченов установил, что если наступает утомление мышц одной руки, то их работоспособность восстанавливается быстрее при работе другой рукой или ногами. Он считал, что это связано с переключением процессов возбуждения с одних двигательных центров на другие. Отдых с включением других мышечных групп он назвал активным.

Несмотря на длительную историю изучения вопроса, общей теории утомления до сих пор не сформулировано. На рис. 22 представлена схема механизмов утомления при мышечной работе.

В настоящее время установлено, что в различных условиях деятельности вклад тех или иных факторов в развитие утомления может изменяться.

Контрольные вопросы

1. Какие теории существуют для объяснения развития утомления в изолированных мышцах?

2. Какие основные направления выделяют в рамках центрально-нервных теорий?

3. От каких факторов зависит развитие утомления в мышцах при экстремальных нагрузках?

Сила – с давних пор характеризуется как способность человека преодолевать внешнее сопротивление или противодействовать ему посредством мышечных усилий.

То есть под этим понятием подразумевают любую способность человека напряжением мышц преодолевать механические и биомеханические силы, препятствующие действию, противодействовать им, обеспечивая тем самым эффект действия (вопреки препятствующим силам тяжести, инерции, сопротивления внешней среды и т.п.) (Л. П. Матвеев, 1991).

Сила - одно из важнейших физических качеств в аб­солютном большинстве видов спорта. Поэтому ее разви­тию спортсмены уделяют исключительно много внимания.

В зависимости от условий, характера и величины про­явления мышечной силы в спортивной практике принято различать несколько разновидностей силовых качеств.

Чаще всего сила проявляется в движении, т. е. в так называемом динамическом режимединамичес­кая сила »). Иногда же усилия спортсмена движением не сопровождаются. В этом случае говорят о статичес­ком (или изометрическом) режиме работы мышц («статическая сила ») (С. М. Вайцеховский, 1971).

Абсолютная и относительная сила

Оценивая величину усилия в том или ином упражне­нии или простом движении, применяют термины «абсо­лютная» и «относительная» сила.

Предельное, максимальное усилие, которое спортсмен может развить в динамичес­ком или статическом режиме. Примером проявления абсолютной силы в динамическом режиме является под­нимание штанги или приседание со штангой предельного веса. В статическом режиме абсолютная сила может быть проявлена, например, когда максимальное усилие прилагается к неподвижному объекту («выжимание» неподвижно закрепленной штанги).

Относительная сила - величина силы, прихо­дящаяся на 1 кг веса спортсмена. Этот показатель при­меняется в основном для того, чтобы объективно срав­нить силовую подготовленность различных спортсменов.

Факторы, обуславливающие мышечную силу

Мышечная сила зависит от нескольких факторов. Основ­ной из них - физиологический поперечник мышц. Прак­тически это означает, что чем мышца толще, тем большее напряжение она может развить (принцип Вебера). Однако не всегда бывает так, поскольку сила мышцы зависит и от другого факто­ра - нервной регуляции, осуществляемой соответствую­щими отделами коры больших полушарий головного мозга.

Нервная регуляция, в свою очередь, определяется тремя различными показателями: количеством «включае­мых» в работу мышечных волокон (так называемых двигательных единиц), частотой нервных импульсов, поступающих в мышцу по нервным путям из центральной нервной системы, и степенью синхронизации (совпаде­ния) усилий всех двигательных единиц, принимающих участие в напряжении мышцы.

Под влиянием импульсов, поступающих в мышцу по двигательным (эфферентным) нервным путям, мышца сокращается с определенным заданным усилием и на за­данную длину. Правильность выполнения движения контролируется соответствующими нервными клетками (рецепторами) мышцы, информация от которых по чувст­вительным (афферентным) нервным путям поступает в головной мозг. По таким же нервным путям мышца получает сигнал и к расслаблению. Максимально возможное ее сокращение (укорочение) при прочих равных условиях пропорционально длине мышечных волокон (принцип Бернулли) (А. Н. Воробьев, 1988). Однако даже нерабо­тающая мышца всегда сохраняет некоторое напряжение, называемое мышечным тонусом.

В исследованиях (Ю. В. Верхошанский, 1988; В. М. Зациорский, 1970) обна­ружено, что различные типы силовых проявлений (например, в статических условиях, в продолжительном беге, в скоростно-силовых упражнениях) в спорте и вообще в двигательной деятельности нередко мало связаны или даже отрица­тельно коррелируют друг с другом. Это и послужило поводом для дифференциации понятия "сила".

Литература

  1. Вайцеховский С. М. Книга тренера. – М.: Физкультура и спорт, 1971. – 312 с.
  2. Верхошанский Ю. В. Основы специальной физической подготовки спортсменов. – М.: Физкультура и спорт, 1988. – 331 с.
  3. Дворкин Л. С. Силовые единоборства. Атлетизм, культуризм, пауэрлифтинг, гиревой спорт. – М., 2001. – 223 с.
  4. Дворкин Л. С., Хабаров А. А., Евтушенко С. Ф. Методика силовой подготовки школьников 13–15 лет с учетом их соматической зрелости // Теория и практика физической культуры. 1999, № 3, с. 34–35.
  5. Дворкин Л. С., Хабаров А. А., Лысенко В. В. Опыт базовой силовой подготовки школьников 12–14 лет различной силовой специализации // Физкультура и спорт, 2000, № 1, с. 34–38.
  6. Дворкин Л. С. Юный тяжелоатлет. – М.: Физкультура и спорт, 1982. – 160 с.
  7. Зациорскнй В. М. Физические качества спортсмена.– М., Физкультура и спорт, 1970. – 212 с.
  8. Коренберг В. Б. Проблема физических и двигательных качеств // Теория и практика физической культуры, 1996, № 7, с. 2-5.
  9. Коц Я. М. Физиология мышечной деятельности. Учебн. для ин-тов физ. культ. М.,1982. – 415 с.
  10. Марченко В. В., Дворкин Л. С., Рогозян В. Н. Анализ силовой подготовки тяжелоатлета в нескольких макроциклах // Теория и практика физической культуры. 1998, № 8, с. 18–22.
  11. Матвеев Л. П. Основы спортивной тренировки. – М.: Физкультура и спорт, 1977. – 271 с.
  12. Матвеев Л. П. Теория и методика физической культуры. Учебное пособие для ин-тов физ. культуры. –– М.: Физкультура и спорт, 1991. – 543 с.
  13. Озолин Н. Г. Современная система спортивной тренировки. – М., Физкультура и спорт, 1970. – 356 с.
  14. Теория и методика физического воспитания (под общ. ред. Л. П. Матве­ева и А. Д. Новикова). М., Физкультура и спорт, 1976. – 423 с.
  15. Филин В. П. Воспитание физических качеств у юных спортсменов. – М.: Физкультура и спорт, 1974. – 232 с.
  16. Хэтфилд Ф. К. Всестороннее руководство по развитию силы. Пер. с англ. – Владивосток: Изд. "Восток", 1996. – 390 с.

Дипломная работа «Методика воспитания силовых способностей юных тяжелоатлетов с использованием тренажеров» (см. в Библиотеке).

Степень укорочения мышцы при сокращении зависит от силы раздражения, морфологиче­ских свойств и физиологического состояния. Длинные мышцы сокраща­ются на большую величину, чем короткие. Незначительное растяжение мышцы, когда напрягаются упругие компоненты, увеличивает ее сокра­щение, а при сильном растяжении сила сокращения уменьшается. Это зависит от условий взаимодействия актиновых и миозиновых нитей в про­цессе сокращения. Напряжение, ко­торое могут paзвивать миофибриллы, определяется числом поперечных мостиков миозиновых нитей, взаимо­действующих с нитями актина, так как мостики служат местом взаимо­действия и развития усилия между двумя типами миофиламентов (ни­тей). В состоянии покоя довольно значительная часть поперечных мо­стиков взаимодействует с актиновыми нитями. При сильном растяжении мышцы актиновые и мнозиновые ни­ти почти перестают перекрываться и между ними образуются незначи­тельные поперечные связи. Величина сокращения снижается также при утомлении мышцы.

Силу мышцы определяют по мак­симальному напряжению, которое она может развить в условиях изо­метрического сокращения или поднимая максимальный груз. Изомет­рически сокращающаяся мышца развивает максимально возможное для нее напряжение в результате активации всех мышечных волокон. Такое напряжение мышцы называют максимальной силой. Максимальная сила мышцыза­висит от числа мышечных волокон, составляющих мышцу, в их толщи­ны. Они формируют анатомический поперечник мышцы, который определяется как площадь поперечного разреза мышцы, проведенного пер­пендикулярно ее длине. Отношение максимальной силы мышцы к ее ана­томическому поперечнику названо относительной силой мышцы, изме­ряемой в кг/см 2 .

Существует также понятие фи­зиологического поперечника мышцы - это поперечный разрез мышцы, перпендикулярный ходу ее волокон. В мышцах с параллельным ходом во­локон физиологический поперечник совпадает с анатомическим. У мышц с косыми волокнами он будет больше анатомического. По этой причине си­ла мышцы с косыми волокнами значительно больше силы мышцы той же толщины с продольными волок­нами. Большинство мышц животных с косыми волокнами перистого строе­ния. Такие мышцы имеют большой физиологический поперечник, поэто­му и обладают большой силой. Отно­шение максимальной силы мышцы к ее физиологическому поперечнику называют абсолютной силой мышцы. В процессе мышечной работы попе­речник мышцы увеличивается и сле­довательно, возрастает сила данной мышцы.

Работа мышц

При сокращении мышца укорачивается, совершая ра­боту. Работу мышцы, при которой происходит перемещение груза и движение костей в суставах, называют динамической. Мышца производит работу и в том случае, когда она сокращается изометрически, развивая напряжение без укорочения мышцы, например при удержании груза. При этом внешней работы нe производится, и такую работу называют статической.

Динамическая работа мышцы (w ) измеряется произведением массы груза (р) на высоту его подъема (А) и выражается в килограммомет­рах: w = ph (кгм). Внешняя механи­ческая работа мышцы по мере возра­стания груза вначале увеличивается, а затем уменьшается.

Зависимость работы от величины груза выражается законом средних нагрузок: работа мышцы будет наи­большей при средних нагрузках. Кроме нагрузок, имеет значение и ритм работы. Максимальная работа будет выполнена при среднем ритме сокращения (закон средних скоро­стей).

Понимание этой темы позволит вам регулярно повышать рабочие веса в абсолютно любом упражнении, избегая так называемого «плато». Если вы грезите большими мышечными объемами, обязательно прочитайте нижеприведенную информацию.

Бытует мнение, согласно которому сила мышцы напрямую зависит от её объёма, то есть чем больше мышечная группа, тем большую силу она может развить. Данное высказывание верно лишь отчасти. Постараемся объяснить почему.

Влияние нервной системы
Прежде всего, необходимо вспомнить базовый курс физиологии. Скелетные мышцы человека обладают удивительным свойством - они могут работать не всей массой, а лишь определенными частями. Грубо говоря, именно этот факт позволяет нам регулировать силу.

Управление сократительной активностью мышц происходит с помощью мотонейронов – особых клеток нервного типа, которые находятся в спинном мозге. Именно отсюда по специальным каналам (аксонам) в каждую мышцу посылается сигнал той или иной мощности. В то же время ветки аксона непосредственно возле мышечной группы разветвляются на огромное количество канальцев, каждый из которых подведен к отдельной мышечной клетке – симпласту.

Чем сильнее сигнал поступает от мотонейронов, тем большее количество мышечных волокон включается в работу. Именно так мы регулируем силу и скорость мышечного сокращения, однако показатель максимальной силы зависит совсем от других факторов.

Тетанус
Для того чтобы продолжить, необходимо ввести термин тетанус – это состояние длительного непрерывного сокращения. Данный процесс наблюдается при подъеме рабочего веса (позитивное движение), при опускании (негативное движение) и при статическом удержании.

Сила тетануса зависит от характера и скорости сокращения мышц. Следует помнить: чем быстрее сокращается мышца, тем меньшую силу она может создать . Следовательно, максимальная скорость сокращения мышечного волокна наблюдается при отсутствии внешней нагрузки. В то же время максимальная сила развивается при негативном движении, например в опускании штанги при жиме лежа.

Влияние типов мышечных волокон Как уже говорилось выше, сокращение мышцы начинается с сигнала ЦНС, который поступает в мотонейрон, а оттуда по аксонам к мышцам. Силу сигнала контролирует человеческий мозг, и чем сильнее воздействие на мотонейрон, тем выше частота импульса поступающего по аксонам.

Для ходьбы, как правило, достаточно 4-5 Гц, однако максимальная частота может превышать 50 Гц. В спинном мозге существуют мотонейроны как быстрого, так и медленного типа. Первые могут создавать высокочастотный импульс, который вызовет гораздо большую силу, нежели частоты медленных мотонейронов. Интересным фактом является то, что все быстрые мотонейроны подключены к быстрым мышечным волокнам (белым), а медленные в свою очередь к одноименным (красным).

Сила мышечной группы так же зависит от самой банальной характеристики – количества активных в данный момент волокон. Люди, у которых количество быстрых (белых) мышечных волокон преобладает, могут похвастаться большей силой, так как за единицу времени могут задействовать большее число мышечных клеток.

Люди с преимущественно красными (медленными) волокнами не выделяются силовыми результатами, зато они сильнее предрасположены к совершению длительной работы с умеренной нагрузкой.

Защитные механизмы
Нельзя не отметить существование целой защитной системы под названием органы Гольджи, которые находятся непосредственно в сухожилиях. Они играют роль «сканеров», которые проверяют каждый сигнал, посланный из ЦНС.

При регистрации слишком сильного напряжения, потенциально опасного для костей и суставов, органы Гольджи оказывают угнетающее и тормозящее действие на все активные мотонейроны. В итоге по аксонам идет заниженный сигнал, что в свою очередь заметно ослабляет ту или иную мышечную группу. К сожалению, зачастую данный процесс начинается задолго до реальной опасности. Организм лишний раз подстраховывается, вследствие чего органы Гольджи работают «с запасом».

Однако не все так плохо, ведь данная характеристика тренируется. Регулярные субмаксимальные нагрузки способствуют повышению порога возбудимости органов Гольджи. Кроме того стоит учесть, что некоторые люди от рождения обладают хорошо развитой сухожильной системой, вследствие чего проявляется так называемая сверхсила.

Влияние мышечного энергообмена
Еще одним важным фактором, влияющим на силу мышечной группы, является режим , в котором выполняетсся то или иное упражнение.

Естественно каждый читатель знает о том, что максимальный рабочий вес, то есть сила, зависит и от количества времени под нагрузкой (количества повторений).

В рамках данной темы достаточно отметить, что исходный уровень АТФ и КрФ заметно влияет на возможный рабочий вес отягощения в любом упражнении. Однако стоит помнить, что у некоторых людей, и в частности спортсменов со стажем, уровень энергетических ресурсов достаточно высок, и прием креатиновых добавок в этом случае не поспособствует заметному увеличению силы. В то же время, новичок с заведомо низким уровнем КрФ и АТФ может получить невероятный скачок в силе, за счет банального употребления креатина.

В случае с 8-12 повторениями, ключевую роль играет не количество фосфатов, а каскад других характеристик, таких как: способность сопротивляться лактату (молочной кислоте), количество гликогена мышц, частота мотонейронных сигналов и других. Также стоит отметить, важность активности фермента АТФазы , который расщепляет АТФ и дарит нам энергию.

Данная характеристика всецело зависит от кислотности среды. Так, в нейтральной среде (pH=7) данный фермент показывает отличную работоспособность, но как только в мышечной группе начнут появляться кислые продукты метаболизма, активность АТФазы начнет спадать к нулю. Если в диапазоне повторений 1-6 лактата нет, то при 8-12 рабочих движениях, молочная кислота непременно понизит ваши силовые характеристики.

Практические выводы
Резюмируем всё вышесказанное. Итак, сила мышц зависит от следующих факторов:

  • Силы и частоты сигналов ЦНС и мотонейронов соответственно;
  • Количества мышечных волокон, в частности быстрого (белого) типа;
  • Высокого порога возбудимости органов Гольджи, то есть от крепости связок и суставов;
  • Количества гликогена, АТФ, КрФ или способности противостоять лактату, при том или ином количестве повторений.

Теперь, зная какие факторы влияют на силу мышц, вы можете развивать каждую отдельную характеристику, будь то нервная система или количество КрФ.

Выбор тренировочной цели зависит от того, какую силу вы развиваете: на 1-6 повторений или на 8-12. Необходимо помнить, что у любой характеристики есть свой предел развития. Если вы столкнулись с застоем, попробуйте сменить тренировочную цель. Как правило, достаточно поменять количество повторений.

Стоит отметить, что любая тренировка и развитие силы в целом, увеличивает количество мышечных волокон и объем мускулатуры. Именно поэтому все представители силовых видов спорта обладают хорошим телосложением.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!