Упражнения. Питание. Диеты. Тренировки. Спорт

Генетическая предрасположенность к спорту. Спортивная генетика

Существуют гены, улучшающие результаты аэробных упражнений и влияющие на мышечную силу, во время тренировок, на размер и форму вашего тела. Чтобы понять, как именно гены влияют на ваши спортивные достижения, обратимся к профессору Мэрилендского университета Стивену Роту (Stephen Roth).

Когда важны гены

На что гены влияют больше - на физическую или психологическую выносливость? Стивен Рот считает, что ДНК важна для обоих процессов. Кроме того, стоит поставить вопрос по-другому: велико ли различие между вами и другими людьми и зависит ли оно от генов? Идея, которая лежит в основе этого, называется наследственностью.

HealthGauge/Flickr.com

Оценка наследственности всегда немного груба, потому что основывается на результатах исследования конкретной группы населения. Если в сферу интересов учёных входят только люди, которые ведут сидячий образ жизни и занимаются кардиоупражнениями, то разница в результатах зависит в основном от ДНК. Если же включить в фокус-группу профессиональных атлетов, то гены играют меньшую роль - всего лишь 50%.

Вот почему вам не нужно расстраиваться, если обнаружите «плохие» гены в своём роду. Некоторые характеристики тела действительно передаются из поколения в поколение, но даже это можно изменить.

Например, ожирение передаётся в 70% случаев, то есть гены в этом вопросе играют большую роль. Но все мы знаем, что правильная и активные тренировки сделают своё благородное дело.

Вот некоторые данные о наследовании спортивных способностей. Чем выше процентное значение, тем больше вы можете обвинять гены в собственных неудачах.

  • Аэробные упражнения - 40–50%.
  • Силовые упражнения - 50–60%.
  • Выносливость - 45%.
  • Высокий рост - 80%.
  • Способности к спорту как таковому - 66%.

Способности к тренировкам тоже важны и тоже обуславливаются генами. К примеру, если вы и ваш приятель решили следовать одной , вероятно, что один из вас будет сильнее другого к концу серии занятий.

Есть ещё один фактор, более сложный для понимания, однако дающий всем нам надежду на лучшее. Способность к спорту - штука многокомпонентная. Возможно, вы не можете бегать так же быстро, как ваши товарищи по футбольной команде, зато обладаете невероятным зрением и сильным ударом. Или, может, вам тяжело заниматься силовыми нагрузками, но у вас длинные ноги, которые делают вас крутым бегуном.

Не сдавайтесь в любом случае. Даже если обнаружили у себя парочку «слабых» генов.

Насколько важны гены

Большинство из нас не пытается Усэйна Болта (Usain Bolt) , поэтому для них гены имеют меньшее значение, чем для профессиональных атлетов.

Мы имеем в виду, что обычным людям проще, ведь планка не настолько высока. Большинство из нас хочет не пробежать марафон первым, а просто дойти до финиша. Ведь каждый может тренироваться с такой целью. Или мы хотим победить команду противника в очередном футбольном (баскетбольном, хоккейном, квиддичном) матче, но не выйти на первое место в профессиональной лиге. Тем, кто занимается спортом в свободное время, очередное достижение приносит удовольствие, желание достичь большего и разработать эффективную стратегию дальнейших действий.

Генетическое преимущество одной способности над другой невероятно мало. Но эта крошечная деталь отделяет золотого призёра Олимпийских игр от диванного болельщика, просматривающего все матчи дома.

Почему нет простого генетического теста

Генетика - сложная наука. Из 20 000 человеческих генов, как указывает Стивен Рот, лишь сотни были изучены и только несколько десятков исследованы с точки зрения их влияния на результаты тренировок.


Richard Giles/Flickr.com

Исследование 2009 года свидетельствует: можно предсказать рост человека, если измерить рост его родителей и исследовать 54 гена высоты.

Существуют генетические тесты, которые призваны оценить способности человека к спорту, однако их информативность ставится под сомнение. Можно выявить, к примеру, ген под названием ACE. Некоторые его версии ассоциируются с талантом к аэробным упражнениям и выносливостью спортсменов.

Но полученные данные о генах применить на практике нельзя. Стивен Рот говорит, что ни один из этих тестов не может считаться объективным. Возможно, он покажет 1–2% существующего положения дел.

На основе таких генетических тестов вам могут посоветовать конкретные виды спорта, но наука - это не то, на что нужно полагаться в своём выборе.

Стивен Рот также считает, что проводить подобные генетические тесты для детей нельзя. Их результаты говорят очень мало о таланте , зато родители могут взять их на вооружение и заставлять своё чадо метаться из секции в секцию, настаивать на достижении невероятно высоких результатов. Делать это, основываясь на анализе нескольких генов, глупо.

Как узнать, к чему есть способности

Итак, тесты нам не помогут. Как же определить, к какому виду спорта вы имеете склонность?

Лучше (и проще) посмотреть на свою семью и собственный опыт.

Например, если ваши родители достигали впечатляющих результатов в беге или , вам тоже стоит попробовать эти виды спорта.

Или же, допустим, вы несколько лет тренируетесь, чтобы пробежать марафон. Но длинные дистанции вам даются настолько плохо, что вы до сих пор не смогли достичь поставленной цели. Зато на коротких вы чувствуете себя как рыба в воде. Измените расписание, займитесь тем, к чему у вас есть способности. Но не спешите обвинять гены во всех своих бедах. Возможно, вам стоит тренироваться немного упорнее.

Избегайте выгорания, не переусердствуйте со спортом. Такое часто случается с профессиональными спортсменами.

Каковы бы ни были ваши гены, вы всегда можете подобрать что-то для себя и заниматься спортом успешно.

Если вы не знаете, какой вид спорта подходит вашему ребенку, можно сделать генетический анализ.

Самбо, хоккей, волейбол, футбол, плавание, художественная гимнастика… Каким видом спорта будет заниматься ребенок, родители начинают задумываться порой еще до его рождения. Главными аргументами обычно становятся личные нереализованные успехи родителей, попытка достичь более высоких результатов, чем у соседского мальчика Леши, или вовсе ближайший от дома дворец спорта, в котором что-нибудь да подойдет.

При этом родители не задумываются, что возможности у всех детей разные, настоящего успеха смогут достичь немногие. Дело здесь не только в том, что понравится самому ребенку (это, кстати, ключевой фактор), но и в том, какие физические нагрузки он способен выдержать, как формируются скелетная и мышечная масса, как проявляет себя организм в условиях гипоксии, наконец.

«Летидор» обратился к экспертам, чтобы выяснить, что такое спортивная генетика и как она может помочь родителям подобрать наиболее комфортный вид спорта для своего ребенка.

Что такое спортивная генетика

Спортивная генетика - отрасль медицинской генетики, которая помогает объяснить, как наследственные данные влияют на развитие спортивных талантов человека.

Наследственность может определять такие характеристики, как выносливость (кардиореспираторная и/или мышечная), скоростно-силовые качества (скорость, взрывная и абсолютная сила), развитие мускулатуры, способности к развитию тренированности и возможные проблемы (риск гипертрофии миокарда левого желудочка, сердечной недостаточности, нарушения ритма, заболевания мышц и скелета).

На основании результатов генетического анализа можно оптимизировать тренировочный процесс.

Это значит - выработать индивидуальные рекомендации по режиму и типу нагрузки, восстановлению после тренировок и соревнований, а также скорректировать питание в соответствии с нуждами спортсмена и проводить постоянный контроль потенциальных «спортивных» заболеваний сердечной мышцы.

Ставка на «не свой» вид спорта и неверный расчет сил могут привести к перенапряжению механизмов компенсации, замедленному восстановлению, ухудшению или приостановке спортивных результатов и, как следствие, к разочарованиям детей и родителей.

С какими генами «работает» спортивная генетика

Спортивная генетика нацелена на определение генетических маркеров, которые отличают успешных спортсменов определенных направлений от обычных людей. Вариант гена называется аллель. Ген кодирует белок либо задает его свойства, а уже непосредственно белки - основные функциональные компоненты организма.

Например, ген ACTN3 кодирует белок актинин, основной компонент мышечного волокна. Полиморфизмы - вариации «генетического кода», которые могут приводить к изменениям свойств, функции или даже прекращению выработки белка.

В настоящее время известно около 100 генов, от которых зависит предрасположенность к спортивным достижениям.

В их числе гены, отвечающие за выносливость, скорость и силовые качества, риск сердечно-сосудистой патологии, ограничение двигательной активности и некоторые другие.

Какие показатели включены в комплекс исследований

Итак, все гены, на которых фокусируются исследования по спортивной генетике, связаны с проявлением спортивных качеств. В различных лабораториях количество и список генов могут варьироваться.

PPARA отвечает за белок, который регулирует обмен липидов и глюкозы, контроль запасов энергии и массу тела.

Варианты этого гена могут повлиять на проявления выносливости.

PPARD Ответственен за повышение доли так называемых медленных мышечных волокон и выносливость. При этом, согласно многим исследованиям, вариация в этом гене имеет отношение к развитию «профессиональных» кардиологических заболеваний спортсменов - гипертрофии левого желудочка и ишемии, что может приводить к смерти.

Ген AMPD1 кодирует энергообеспечение скелетной мускулатуры при мышечном утомлении.

От него зависит, будет ли человек быстро утомляться, насколько эффективны нагрузки высокой интенсивности.

Вариации этого гена являются одной из основных причин метаболической миопатии и миопатии, к которым ведут нагрузки (при миопатиях наступает дистрофия мышц). Симптомы миопатии включают мышечную слабость, боли, судороги, парезы, а также неспособность выдерживать длительные физические перегрузки.

Вариации гена ACTN3 ведут к уменьшению числа быстрых мышечных волокон и ухудшению скоростно-силовых характеристик.

MSTN связан с ростом мышечной массы. Белок, который кодирует этот ген, при малом количестве способствует росту мышц, а при чрезмерной выработке, напротив, ведет к атрофии и потере массы тела.

При вариации в гене AGT у спортсменов повышается риск гипертензии, ишемической болезни и гипертрофии левого желудочка. Тем не менее, повышенный уровень кодируемого этим геном белка помогает строительству скелетных мышц, что может быть преимуществом для спортсменов, занимающимися силовыми видами спорта.

В таком случае атлет должен постоянно тренироваться под врачебным контролем.

Белок HIF1A играет решающую роль в адаптации организма к гипоксии (недостаток кислорода). Вариация гена может быть полезна спортсменам в тех видах спорта, где требуется как сила, так и выносливость, так как улучшает приспособление организма к условиям гипоксии.

Как выглядит заключение генетика

В заключении врача-генетика дается краткое объяснение каждого выявленного у пациента генотипа. Далее врач должен рассказать, как генотип связан с возможными заболеваниями или функциями организма. Из этого следуют рекомендации по профилактике, диагностике и возможным методам лечения (в этом необходимо участие лечащего врача).

В сумме, чем больше набор благоприятных аллелей (формы гена), тем выше шанс у человека развить в себе спортивные качества и достичь спортивных успехов в том или ином направлении.

Но для более точного определения предрасположенности к спорту стоит включить в обследование также антропометрию и функциональную диагностику.

Насколько объективно заключение

Не только большинство заболеваний, известных на сегодняшний день, но и физические данные зависят от комбинации факторов окружающей среды и генетической предрасположенности. И повышенный кардиориск как ограничитель спортивной карьеры - не приговор, это лишь знак того, что данного спортсмена нужно тщательно и регулярно обследовать и стараться не подвергать изнурительным нагрузкам. Повышенный риск того или иного состояния может никогда не реализоваться, а при правильных профилактических мерах и вовсе минимизируется.

Что касается предрасположенности к типу мышечных волокон и виду физической нагрузки, важно понимать, что генетическое заключение носит лишь рекомендательный характер, миру известны марафонцы с генетическим профилем «преобладания взрывной силы». Поэтому если ваш ребенок хочет заниматься футболом, а генетический профиль пророчит ему быть бодибилдером, не нужно пренебрегать желанием ребенка.

Некоторые лаборатории и вовсе не выдают данные об ассоциации с видами спорта, чтобы не ущемлять права детей.

Может ли малыш, у которого от природы нет явно выраженных способностей, стать хорошим спортсменом

Конечно же, да! Я начинаю тренировать детишек с 5 лет, при этом многие приходят и позже - в 9, 12 и 14. И если посмотреть на первые полгода обучения, то сразу видно, кто схватывает на лету, а кому нужно объяснять по 100 раз. Это зависит от природных данных и общего развития ребенка.

Но проходит год-два, и вперед вырываются более трудолюбивые и внимательные ребята. Способности потихоньку начинают уходить на второй план.

К тому же даже у младшего возраста тренировки бывают тяжелыми, и дети с малых лет понимают, что только трудом можно чего-то добиться в спорте и жизни. Таким образом, например, из группы новичков 20 человек через годы остаются 5 детей, у которых есть характер и трудолюбие. Они справились с проигрышами, они выдержали тяжелые тренировки, поверили в себя и начали выигрывать.

Конечно же, работа тренера очень важна, ведь необходимо не переступить тонкую грань: это дети, нельзя у них отнимать детство, то есть требовать от них результатов, как от взрослых. Нужно беседовать с ребятами, объяснять понятным им языком, что все получится и, если он захочет, то обязательно будет чемпионом.

Какие черты характера нужно развивать у ребенка в спорте

1. Трудолюбие. Обычно я говорю ребятам: главное, что им сейчас мешает это - лень. Спрашиваю: «Кто твой главный соперник?» Они начинают отвечать: «Вася, Коля, Паша…».

Я отвечаю, что неправильно. Главный твой соперник - это ты сам. Иными словами, твоя лень.

Если ты поборешь свою лень, то одолеешь и Пашу, и Колю!

2. Упорство и характер. После проигрышей или когда что-то не получается, дети расстраиваются. В этот момент нужно поговорить с каждым, успокоить и разложить все по полочкам на примерах личных и не только, чтобы ребенок понял, что надо исправить ошибки, внимательнее слушать тренера и заниматься более усердно - и это приведет в итоге к победе. Это закалит характер ребенка, ведь если ты упал, нужно встать и идти дальше.

3. Умение мыслить. Я занимаюсь борьбой, а это не цикличный вид спорта, в нем очень многое определяет тактика. Важно научить тактическому мышлению и на примерах показать, как слабый может победить сильного.

Какой спорт подойдет больше ребенку

Очень часто родители отдают ребенка в тот спорт, которым сами когда-то занимались. В этом две стороны медали: если ребенку это нравится - отлично, но когда ребенок не хочет, а его заставляют - плохо и неэффективно.

На мой взгляд, в детстве надо путем объяснений, проб и ошибок дать возможность позаниматься всем, чем можно: и музыкой, и рисованием, и хоккеем, и борьбой, и чем угодно. Тогда ребенок сам выберет, что ему ближе.

Обычно в той области, в которой у ребенка все получается, ему больше нравится - и он там остается.

И это надо делать не единожды, а регулярно менять секции, пока он не остановится на чем-то одном (каким бы докучным этот процесс ни казался родителям - у вас одна жизнь с ребенком!). В 6 лет сыну нравится плавать, а в 9 он захочет бороться, например. Главное, чтобы ребенок развивался, а если ему суждено стать олимпийским чемпионом - он им станет.

В настоящее время по анализам ДНК специалисты могут рекомендовать родителям отдавать ребенка в определенные виды спорта, например, в бег на короткие дистанции или в тяжелую атлетику. Тренер, зная генетический потенциал ребенка, будет целенаправленно подбирать все параметры тренировок. Иными словами, спортивный отбор на генетическом уровне реален уже при рождении ребенка.

Если по результатам анализов ДНК атлета не соответствует выбору спортивной деятельности, достижение им хороших результатов в спорте возможно, но требует гораздо больше усилий. Есть примеры таких исключений, но в спортивный отбор вмешивается медицинский аспект. Например, атлет с генотипом D/D по гену АКФ (предрасположенность к бегу на короткие дистанции и к тяжелой атлетике) профессионально занимается бегом на средние дистанции или гиревым спортом (к бегу на средние дистанции и гиревому спорту наиболее предрасположены атлеты с генотипом I/I по гену АКФ). Кроме того, что у него будут проблемы с выработкой выносливости, его сердце, генетически не адаптированное к нагрузкам на выносливость будет чрезмерно гипертрофироваться (у атлетов с генотипом I/I гипертрофия будет умеренной). Как утверждает современная спортивная медицина, чрезмерная гипертрофия миокарда является одним из грозных факторов риска заболеваний сердца. Примером тому, ранняя инвалидизация и преждевременная смерть некоторых спортсменов.

В результате длительных исследований выявлены следующие закономерности.

Морфологические показатели – наиболее наследуемые признаки (для продольных размеров тела и костной системы это выражено больше, чем для объемных размеров и мышечной системы).

В 50% случаев дети выдающихся спортсменов имеют выраженные спортивные способности; если оба родителя спортсмены, то в 70% случаев. Тип наследования спортивных показателей – доминантный.

У мужчин-спортсменов двигательные способности передаются по мужской линии.

Выдающиеся спортсмены преимущественно являются младшими детьми в семьях из 2-3 детей.

Процент выдающихся спортсменов рожденных в первом квартале года в 4 раза превышает процент рожденных в последнем квартале.

В 5-6 летнем возрасте наиболее эффективный отбор в спорт может достигаться за счет выявления генетических маркеров.

К генетическим маркерам относятся: антропогенетика (нормостеник, гиперстеник), количественный и качественный гормональный состав в тканях, группа крови, дерматоглифика, состав мышечных волокон, моторное доминирование, индивидуальный профиль функциональной и моторной ассиметрии, тренируемость, определенный генотип (например, по гену АКФ) и т.д.

Дерматоглифика позволяет прогнозировать спортивные задатки. Так, у высококвалифицированных спортсменов частота завитков больше (48%) и более высокий тотальный гребневой счет (213).

Степень тренеруемости имеет следующие генетические маркеры: креатинкиназа, аденилаткиназа, фосфоглюкомутаза, иммунный статус (А,В,С локусы в HLA системе) и др.

Каждый, кто хочет быть в хорошей спортивной форме, способен этого добиться. Для этого нужно только энергично заниматься спортивными упражнениями. Но оказалось, что и хорошая спортивная форма, и соответствующая потеря веса в значительной степени зависят от генетической основы организма, так что одним людям достичь хорошей физической формы легко, а другим почти невозможно, несмотря ни на какие усилия. К тому же разные люди могут обретать эту форму по-разному. Те, кто наследует способность наращивать мышечную силу, не всегда могут развить большие мускулы, а те, кто могут научиться хорошо бегать и прыгать, могут не показывать хороших результатов в тяжелой атлетике.

Собрав убедительный материал о том, что гены почти полностью определяют спортивный потенциал индивида, ученые перешли к обширным и углубленным исследованиям с целью найти эти специфические гены.

В этих исследованиях не затрагиваются вопросы о влиянии физических упражнений на здоровье, об их способности предотвращать сердечные болезни или продлевать жизнь. Они должны подсказать, например, как помочь старикам со слабыми мышцами уберечься от опасных падений, выяснить, кому из них нужна дополнительная помощь в укреплении ослабевших мышц и как укрепить мышцы людям, генетически предрасположенным к слабости.

Еще большую загадку представляет собой мышечная дистрофия. У животных с таким же генетическим дефектом, как у людей, непропорционально разрастаются мышечные ткани. Например, у больных кошек языки перестают помещаться в ротовой полости. У детей с мышечной дистрофией тоже без всяких усилий вырастают огромные мышцы, а потом, после 5 лет, они начинают безудержно сокращаться чуть ли не до полного исчезновения.

При исследованиях генетики спортивного потенциала возникают трудно разрешимые этические проблемы. Нужно ли говорить людям, что у них имеется ген, который никогда не позволит им научиться сносно бегать и прыгать? Нужно ли проводить генетическое тестирование спортсменов, чтобы выяснить, у кого наилучшие шансы стать чемпионом?

Основополагающие исследования в этой области начались примерно 25 лет тому назад. Так, доктор Клод Бочар, сейчас руководящий Биомедицинским центром при Луизианском штатном университете, в те годы изучал проблемы ожирения. Он помещал испытуемых в так называемую метаболическую палату, где можно было следить за тем, что они ели и сколько калорий сжигали. Возникла идея таким же образом изучать эффекты физических упражнений, предлагая людям тренироваться в лабораторной обстановке, где можно точно замерять количественные показатели их усилий.

Некоторые спортивные физиологи и тренеры раньше предполагали, что люди, говорившие, что они добросовестно упражняются, но объективно никогда не улучшавшие свои физические показатели - просто обманщики, а в лучшем случае – заблуждающиеся, не способные правильно оценить интенсивность своих тренировок. Доктор Бочар первым усомнился, что это так. Он утверждал следующее: «Я заинтересовался тогда этой проблемой, потому что обнаружил большие различия между людьми, которые вели практически один и тот же малоподвижный образ жизни. Измерения показали, что у некоторых из них были очень неплохие сердечно-дыхательные показатели, тогда как другие были в ужасной физической форме. И я подумал, не в генетических ли различиях все дело?».

Первое исследование этого вопроса доктор Бочар и его сотрудники начали в 1982-м году на мужчинах и женщинах в возрасте от 18 до 30 лет, которые всю свою жизнь вели сугубо сидячий образ жизни, но не страдали особенно от ожирения.

Им задавали много вопросов и измеряли их физическую активность на протяжении последних недель, месяцев и даже лет. У всех у них была кабинетная работа. Они ездили на машинах и никогда не ходили пешком. Никогда не занимались никаким спортом.

Через 20 недель после начала специальной тренировочной программы, в процессе которой этих людей заставляли тренироваться по 50 минут в день четыре дня в неделю на уровне 85% от их максимального сердечного ритма, исследователи сделали некоторые физиологические измерения и получили весьма интересные результаты. Наблюдались большие различия в дыхательных функциях, в максимальном поглощении кислорода, в результатах биопсии мышечных и жировых тканей, изменения в выносливости, в способности к интенсивным тренировкам, а также изменения в содержании жира и в размерах мышечных волокон различных типов. У некоторых испытуемых физическая форма ничуть не улучшилась, зато у других она улучшилась на 50 и даже 60%. Все участники эксперимента, находясь под строгим контролем, неукоснительно выполняли одни и те же указания исследователей. Через некоторое время доктор Бочар со своими сотрудниками повторил эти исследования на однояйцовых близнецах, и обнаружил, что близнецы всегда одинаково реагировали на физические тренировки и показывали после них одинаковые результаты.

Сейчас доктор Бочар проводит обширное исследование в 5 университетах, в котором участвует 750 человек. Его цель – идентифицировать гены, имеющие отношение к реакции организма на физические тренировки. В эксперименте тренировали людей, проводили тесты, снова и снова тренировали. Результаты бесспорно показывали, что одним людям физические тренировки приносят пользу, улучшая их физиологические показатели, а для других они почти бесполезны.

Один из главных показателей восприимчивости организма к физической тренировке – это повышение потребления кислорода во время физических упражнений. Чем больше кислорода попадает в кровь и подводится к мышцам, тем больше работы они могут проделать, тем быстрее человек, например, может бежать. В среднем, тренировки увеличивали потребление кислорода на 400 миллилитров. Но в то время как у одних вообще никакого увеличения не наблюдалось, у других оно доходило до 1000 миллилитров. В среднем у 65% людей повышение составляло от 200 до 600 миллилитров кислорода.

Это огромные различия, но среди членов одной и той же семьи они обычно гораздо меньше. Иными словами, дети реагируют на физические тренировки аналогично родителям, и такое же сходство бывает между братьями и сестрами. Так что наследственный фактор здесь играет не меньшую роль, чем в случае оценки склонности к ожирению, к повышенному кровяному давлению или содержанию холестерина.

Другое интересное исследование в области спортивной медицины недавно начал проводить доктор Пол Томпсон, кардиолог из штата Коннектикут. Будучи спортсменом-любителем, неоднократным участником марафонских забегов, доктор Томпсон, тем не менее, несмотря на все свои усилия, никогда не был в состоянии развить приличные мускулы. Он решил что виною тому наследственность и в одной из статей заметил: «У некоторых людей растут мускулы, от одного хождения мимо зала, в котором занимаются тяжелой атлетикой. У других же, как не было мускулов, так и нет, хоть они надорвись, тренируясь со штангой».

Вместе с доктором Эриком Гофманом, генетиком из Детского Национального Медицинского Центра в Вашингтоне и с некоторыми другими специалистами доктор Томпсон предпринял обширное исследование с участием 700 мужчин и 300 женщин, которые никогда раньше не занимались с грузами, а теперь согласились ради науки потренироваться в лаборатории под наблюдением врачей. Они пытаются нарастить свои бицепсы и трицепсы – двуглавые и треглавые мышцы, – но только на одной руке. Другая рука служит для контроля исследователям, изучающим генетические вариации, которыми можно объяснить восприимчивость индивидов к физическим тренировкам.

Хотя сила и размеры мускулов, казалось бы, должны соответствовать друг другу, между этими параметрами нет строгой и постоянной корреляции. Некоторые люди могут заметно нарастить мускулы, но сила их мало изменится, у других, наоборот, по внешнему виду мускулы почти не меняются, но сила их многократно растет. Иногда в результате тренировок растет и сила, и мускулы, в других случаях не меняется ни одно, ни другое.

Хотя исследования, о которых идет речь, поддерживаются главным образом Национальным институтом здоровья, заинтересованным в их медицинских аспектах, их результаты можно использовать и в чисто спортивных целях, например, для более эффективного отбора кандидатов в будущие чемпионы. С другой стороны, возникает этическая дилемма – не будут ли люди психически болезненно воспринимать сообщаемые им факты об их генетической неспособности улучшать свою физическую форму путем тренировок.

Для ответа на этот вопрос исследователи считают нужным проверить, как участники экспериментов воспринимают сведения о своей генетической предрасположенности. Такая проверка включает в себя сложные психологические тесты и сравнение самооценок до и после завершения экспериментальных физических тренировок.

В процессе своих исследований доктор Бочар нашел, что примерно для 10% участников его экспериментов физические упражнения бесполезны, и он сообщил некоторым из них об этом. Но эти люди, видимо, и сами уже понимали, в чем дело. Тренировки не повышали их выносливости, и они не теряли ни грамма жира. Может быть, они и извлекали какую-то пользу из тренировок, но слабая надежда на потенциальное улучшение здоровья, конечно, недостаточная мотивация для людей, желающих улучшить и свой внешний вид, и самочувствие.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реферат

Генетика в спорте

Введение

Существует ли наследственная предрасположенность к спортивным достижениям? На этот вопрос отвечает спортивная генетика - направление генетики, изучающее геном человека в аспекте физической (в частности - спортивной) деятельности. Впервые термин «генетика физической (или двигательной) деятельности» был предложен Клодом Бушаром в 1983 году. Тогда он опубликовал два обзора в одном номере журнала «Exercise and Sport Science reviews», где представил обобщающие факты, во-первых, об индивидуальных различиях в ответ на физические нагрузки, во-вторых, о наследуемости многих физических, физиологических и биохимических качествах, вовлеченных в процесс физической деятельности.

Вот некоторые факты, указывающие на актуальность рассматриваемой проблематики:

* Ученые, работающие с олимпийской сборной Великобритании, обнаружили, что некоторые из спортсменов обладают предрасположенностью к травмам на генетическом уровне;

* В 50% случаев дети выдающихся спортсменов имеют выраженные спортивные способности; если оба родителя спортсмены, то в 70% случаев. Тип наследования спортивных показателей - доминантный;

* Сотрудники Института Вингейт (Израиль) обследовали 155 профессиональных бегунов и обнаружили, что 80% из тех, кто показывает в состязаниях на выносливость (таких как стайерский бег и марафон) наилучшие результаты, имеют определенные вариации гена NRF2. Среди спринтеров носителями таких вариаций являются лишь 46%;

* Многочисленные исследования, проведенные в последние десятилетия, в частности, в футболе, свидетельствуют о большом влиянии генетической конституции на формирование фенотипа спортсмена, как совокупности свойств его организма, сформированных под влиянием наследственности и внешней среды.

Данные факты дают основание утверждать, что люди с особым генотипом имеют больше шансов стать выдающимися спортсменами. Так ли это?

Основная часть

В конце 80-х годов прошлого века в рамках проекта «Геном человека» начали появляться данные о генах, ассоциированных с проявлением и развитием физических качеств человека. По состоянию на 2009 год генов-маркеров физической активности человека уже обнаружено 239, и прогресс в открытии новых генов очевиден.

Самые первые работы в России по изучению наследственной предрасположенности спортсменов к физическим нагрузкам были начаты в 1999 году в Санкт-Петербургском НИИ физической культуры, под руководством профессора В.А. Рогозкина. Благодаря этому в России и за её рубежами всем высококлассным специалистам в области физической культуры и спорта стало хорошо известно, что предрасположенность человека к выполнению мышечной деятельности различной направленности генетически запрограммирована. Необходимо отметить, что несоответствие уровня физических нагрузок генетической предрасположенности спортсмена может привести к замедлению роста его спортивных результатов и даже к ухудшению состояния здоровья.

В феврале 2001 года два наиболее авторитетных научных журнала в мире «Nature» и «Science» опубликовали отчеты двух научных групп, расшифровавших геном человека. В журнале «Nature» от 12 февраля 2001 года приведены подробные данные о структуре генома человека, полученные международным консорциумом под руководством Френсиса Коллинза, в котором работали ученые Англии, Германии, Китая, США, Франции и Японии в рамках международной программы «Геном человека» с привлечением государственного финансирования. Эта группа выделила в ДНК особые маркеры, легко распознаваемые участки, и по ним определила нуклеотидные последовательности генома человека.

Благодаря тому, что удалось идентифицировать множество генов, постепенно формируется новое направление, которое можно отнести к функциональной геномике , поскольку оно выявляет связи между активностью отдельных генов и различными функциями человека. Среди них важное место занимает выявление связи специфических генов с развитием двигательной функции человека.

Так, в ходе исследований были выявлены различные формы одного и того же гена (аллели), связанные с особенностями углеводного или липидного метаболизма и, соответственно, определяющие предрасположенность организма спортсмена к аэробному (виды спорта на выносливость) или к анаэробному (виды спорта скоростно-силового характера) механизмам энергообеспечения.

Занятия футболом, например, развивают качество силы, но не столько статической, сколько, так называемой, «взрывной» силы, что особенно важно для развития скоростно-силовых способностей. Физическое качество силы довольно заметно зависит от врожденных особенностей человека . Развитие максимальной статической силы на 55% определяется наследственностью и на 45% - средовыми влияниями, т.е. различными внешними воздействиями на протяжении жизни, в том числе тренировочными воздействиями. В еще большей степени от генетического фактора зависит развитие взрывной силы, где наследуемостью определяется, примерно, 68% этого показателя, и лишь 32% может подвергаться изменениям под влиянием направленной тренировки и других средовых воздействий.

Проявления генетических влияний зависят от возраста (они больше выражены у молодых игроков) и мощности работы (они увеличиваются при возрастании мощности работы). Достигнув максимальных значений к 20-летнему возрасту, мышечная сила начинает снижаться в возрасте 45 лет и старше, а скоростно-силовые возможности ухудшаются уже с 35 лет. Наследственному влиянию в наибольшей мере подвержены и морфологические показатели. Особенно ярко наследственная зависимость проявляется в продольных размерах тела футболиста и значительно меньше в объемных.

Существуют также аллели, ограничивающие физическую деятельность человека посредством снижения или повышения интенсивности включения генов. Следствием такого ограничения в лучшем случае является прекращение роста спортивных результатов, в худшем - развитие патологических состояний, например, чрезмерная гипертрофия миокарда левого желудочка.

Связь успеха в спорте с носительством высокого числа вариантов генов, благоприятствующих определенному типу спортивной деятельности, предполагалась уже давно, но подтвердилась только после проведения широкомасштабного многолетнего исследования петербургских ученых из Лаборатории спортивной генетики СПб НИИ физической культуры и их коллег из Лаборатории мышечной деятельности Института медико-биологических проблем РАН. В этом исследовании приняли участие 1423 российских спортсмена различной специализации и квалификации (от разрядников до заслуженных мастеров спорта) и 1132 человек контрольной группы. Спортивные генетики изучили связь 15 наиболее известных генетических маркеров с предрасположенностью к занятиям видами спорта, направленными на развитие выносливости. Было обнаружено, что частоты 10 аллелей выносливости (NFATC4 Gly160, PPARA rs4253778 G, PPARD rs2016520 C, PPARGC1A Gly482, PPARGC1B 203Pro, PPP3R1 promoter 5I, TFAM 12Thr, UCP2 55Val, UCP3 rs1800849 T and VEGFA rs2010963 C) значимо преобладают в группе спортсменов, тренирующих качество выносливости (стайеры) по сравнению с контрольной группой. В дальнейшем всех испытуемых поделили на две группы: с низким (до 8) и высоким (от 9 и больше) общим числом аллелей выносливости. Процент носителей высокого числа аллелей выносливости значимо преобладал у высококвалифицированных стайеров по сравнению с контролем (85,7% против 37,8%). Кроме того, в дополнительных экспериментах учеными была обнаружена положительная корреляция между числом аллелей выносливости и процентным соотношением медленных (устойчивых к утомлению) мышечных волокон у физически активных мужчин и аэробной работоспособностью у квалифицированных гребцов-академистов.

Таким образом, носительство 9 и более аллелей выносливости повышает шансы достижения выдающихся результатов в видах спорта на выносливость. Открытие российских ученых способно существенно повысить эффективность спортивной ориентации и отбора.

Как можно использовать эти данные?

Сотрудники Уральского государственного университета физической культуры (УралГУФК) в настоящее время работают над созданием комплекса генетических тестов, с помощью которых у человека можно выявить задатки к проявлению определенных физических качеств, таких как скорость, сила, выносливость.

Специалисты особо подчеркивают, что речь не идет о выявлении генов, которые определяют уровень способностей спортсменов. Изучение генома позволяет спрогнозировать успех или неудачу в той или иной области конкретного человека, но оно не может стать причиной для дискриминации потенциальных чемпионов.

Уже сейчас по анализам ДНК специалисты могут рекомендовать родителям отдавать ребенка в определенные виды спорта, скажем, в бег на короткие дистанции или в тяжелую атлетику. Тренер, зная генетический потенциал ребенка, будет целенаправленно подбирать все параметры тренировок. Иными словами, в наше время спортивный отбор на генетическом уровне реален уже при рождении ребенка. Можно ли ставить крест на спортивной карьере атлета, если по результатам анализов его ДНК не соответствует выбору спортивной деятельности? Конечно же, везде есть исключения, и есть примеры, когда такие атлеты становились олимпийскими чемпионами. Однако, такой путь становления долгий, и от атлета потребуются масса усилий для достижения Олимпа. Но есть одно но. В спортивный отбор вмешивается медицинский аспект . Простой пример: атлет с генотипом D/D по гену АКФ (предрасположенность к бегу на короткие дистанции и к тяжелой атлетике) профессионально занимается бегом на средние дистанции или гиревым спортом (к бегу на средние дистанции и гиревому спорту наиболее предрасположены атлеты с генотипом I/I по гену АКФ). Кроме того, что у него будут проблемы с выработкой выносливости, его сердце, генетически не адаптированное к нагрузкам на выносливость будет чрезмерно гипертрофироваться (у атлетов с генотипом I/I гипертрофия будет умеренной). Как постулирует современная спортивная медицина, чрезмерная гипертрофия миокарда является одним из грозных факторов риска заболеваний сердца. Примером тому, ранняя инвалидизация и преждевременная смерть некоторых спортсменов.

Однако дела обстоят несколько сложнее, чем кажется на первый взгляд. За кажущейся простотой математического подсчёта генов стоят некоторые актуальные проблемы , на некоторых из которых мы остановимся ниже.

Дело в том, что на сегодняшний день пока ещё существует значительная сложность в оценке генетической предрасположенности ребенка (взрослого) к выполнению определённого вида физических нагрузок, которая заключается в том, что любое физическое качество человека определяется не одним геном, а большим количеством полиморфных (разнообразных) генов .

Кроме того, практически ни один признак нашего организма не зависит только от генов. В его проявление вносят свой вклад образ жизни, окружающая среда, возраст, а также действие других генов.

По словам ведущего научного сотрудника Института общей генетики им. Н.И. Вавилова РАН, Светланы Боринской, например, на состояние костей влияет сразу несколько факторов. У части людей не активен ген лактазы, который определяет толерантность к молочным продуктам. Варианты этого гена влияют на структуру костей. Человек, который не может усваивать лактозу, перестает по этой причине пить молоко или пьет его реже и в результате недополучает кальций. Но на Западе это не является проблемой, так как там люди пьют добавки, которые предотвращают развитие остеопороза, то есть хрупкость костей. Состояние костей зависит, в том числе, и от физических нагрузок. Если вести малоподвижный образ жизни, но при этом правильно питаться, кости все равно не будут прочными, так как они рассчитаны на постоянные нагрузки, но не на перегрузки.

Учеными доказано, что здоровье человека только на 10-15% зависит от деятельности учреждений здравоохранения, на 15-20% - генетических факторов, на 20-25% - состояния окружающей среды и на 50-55% - условий и образа жизни.

По мере стремительного увеличения числа генов-маркёров физической активности человека всё более очевидным становится недостаток данных о функциях генов и, прежде всего, о функциональной значимости тех полиморфизмов, которые они содержат. Исследования в этой области нуждаются в привлечении кадров и в государственном финансировании.

К ещё одной проблеме генетики спорта относится то, что пока невозможно с помощью генетических тестов точно (или с высокой степенью вероятности) измерить стр асть, волю, характер спортсмена - качества, которые делают его успешным.

Но спортивная генетика не стоит на месте. За рубежом тренеры совместно со специалистами по спортивной генетике и медицине уже выработали подходы, с помощью которых можно повысить точность генетического прогноза с учётом многим факторов . На сегодняшний момент все, кто занимается данной проблемой, отмечают, что полезно иметь комплекс генов-маркёров, указывающих на генетическую предрасположенность ребёнка (взрослого) к определённому виду мышечной деятельности. У таких детей тренеру, руководствуясь результатами их генетического анализа и работоспособности, будет легче и быстрее развивать те двигательные качества (скорость, сила, выносливость), которые определяют успех в выбранном виде спорта. В то же время особое внимание уделяется компенсации тех сторон физической активности ребёнка, которые имеют менее благоприятную генетическую подоплёку. Создавая оптимальные условия для развития умений и учитывая как можно больше факторов, можно вырастить настоящего чемпиона!

Таким образом, смена ориентиров и правильная постановка вопроса поможет избежать неправильной и недопустимой дискриминации детей по генетической предрасположенности (или её отсутствию) к определённым видам спорта. Понимание того, какие аспекты физического развития ребёнка нуждаются в особом внимании и компенсации, способно принести большую пользу становлению здоровой и спортивной нации, чем скупой отбор по наличию определённых генов.

Заключение

геномика спортивный наследственный предрасположенность

В последнее время ученые в области спортивной генетики все больше приходят к пониманию того, что основным направлением исследований должно стать не столько изучение молекулярных механизмов наследования спортивных задатков, сколько изучение способности сохранения здоровья спортсмена в процессе адаптации его организма к длительным высокоинтенсивным физическим нагрузкам.

Уже сейчас ДНК-технологии в сфере физической культуры и спорта позволяют не только выявить наследственную предрасположенность спортсмена к развитию и проявлению разных физических качеств, но и оценить генетические факторы риска различных патологических состояний и заболеваний сердечно-сосудистой, мышечной, костной, иммунной и эндокринной систем спортсмена; определить особенности метаболизма в организме спортсмена разных пищевых продуктов, биологически активных добавок, нарушения процессов детоксикации лекарственных препаратов и ксенобиотиков. Все это дает возможность повысить надежность и эффективность системы индивидуальной специализации и подготовки высококвалифицированных спортсменов.

Разработка конкретных тренировочных программ с учетом индивидуальных особенностей каждого спортсмена или группы спортсменов с генетическими данными, несомненно, приведет к росту их спортивных достижений, откроет широкие возможности для дальнейшего совершенствования. В нашей стране совместная работа сотрудников лаборатории спортивной генетики НИИОС УралГУФК с тренерами города Челябинска по разным видам спорта ведется, но, к сожалению, только в рамках собственной инициативы. Ярким примером в реализации результатов генетических исследований в спорте для нас служат пока высокие достижения сборных команд Китая и США.

Список литературы

1. Спортивная генетика. Е.Б. Сологуб, В.А. Таймазов Москва 2000.

2. Генетические маркеры физической работоспособности человека. В.А. Рогозкин.

3. Газета «РБК_daily_online» http://www.rbcdaily.ru/autonews/562949984399363.

4. Genetics of Fitness and Physical Performance. Bouchard C., Malina R.M., Perusse L. 1997. 408 pp.

5. Холодов Ж.К., Кузнецов В.С. Теория и методика физического воспитания и спорта.

6. Интервью с Дмитрием Дятловым, д.б.н., профессором, проректором по НИР Уральского государственного университета физической культуры http://mediazavod.ru/articles/76497.

7. Рогозкин В.А., Назаров И.Б., Казаков В.И. Генетические маркеры физической работоспособности человека // Теор. и практ. физ. культ., 2000, №12, с. 34-36.

Размещено на Allbest.ru

...

Подобные документы

    Генетика как наука, изучающая явления наследственности и изменчивости в человеческих популяциях, особенности наследования нормальных и патологических признаков, зависимость заболеваний от наследственной предрасположенности и факторов внешней среды.

    презентация , добавлен 21.02.2014

    Тайны и механизмы передачи наследственной информации, роль клетки как функциональной и морфологической единицы. Классификация форм наследственной патологии, характеристика наследственных болезней. Значимость наследственных факторов в патологии человека.

    реферат , добавлен 05.07.2010

    Сущность проекта "Геном человека". Генетика и проблемы рака. Влияние генов на агрессивность, преступность и интеллект. Устойчивость к действию алкоголя, никотина, наркотиков. Определение роли наследственности и среды в развитии признаков близнецов.

    научная работа , добавлен 15.03.2011

    Наследственность и изменчивость организмов как предмет изучения генетики. Открытие Грегором Менделем законов наследования признаков. Гипотеза о наследственной передаче дискретных наследственных факторов от родителей к потомкам. Методы работы ученого.

    презентация , добавлен 11.02.2010

    Генетика поведения насекомых. Исследования способности к обучению животных. Последние открытия о возможном генном контроле таких признаков человека, как темперамент и уровень интеллекта. Генетика зависимостей человека: алкоголизм, курение, наркомания.

    курсовая работа , добавлен 24.12.2011

    Адаптация как приспособление организма к среде обитания, к условиям его существования. Особенности условий жизни спортсмена. Биохимические и физиологические механизмы адаптации к физическим нагрузкам. Биологические принципы спортивной тренировки.

    реферат , добавлен 06.09.2009

    Особенности проведения биохимических исследований в спорте, объекты, основные показатели и задачи контроля. Направленность биохимических сдвигов в организме после выполнения стандартных и максимальных нагрузок в зависимости от уровня тренированности.

    реферат , добавлен 06.09.2009

    курсовая работа , добавлен 10.05.2011

    Методы изучения генетики человека: генеалогический, популяционно-статистический, генодемографический. Открытие групп крови и направления исследований в данной сфере. Полиморфизм гематологических признаков. Группы крови по системе АВО и инфекционные.

    курсовая работа , добавлен 06.02.2014

    Генетика и история ее развития, наследственность и изменчивость. Структурно-функциональная организация клеток эукариотического и прокариотического типов, нуклеиновые кислоты и молекулярные носители наследственности, биотехнология и генная инженерия.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!